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GENERAL INTRODUCTION
Introduction

Palladium-catalyzed reactions have found numerous applications in organic synthesis,
especially in processes involving C-C bond or C-X bond formation. The Larock research
group has developed numerous palladium-mediated annulation methodologies, which
generally involve multiple bond formations, for instance, the Larock indole synthesis. These
methodologies afford efficient and general protocols for the preparation of heterocyclic
compounds, many of which exhibit remarkable biological activities. Usually, catalytic
amounts of palladium catalysts are employed and moisture, oxygen and various functional
groups can be readily tolerated.

Recently, during the course of investigating palladium-catalyzed reactions, the Larock
group discovered a novel palladium rearrangement process, namely the through-space
palladium migration, which has also been observed independently by other groups. This
chemistry appears to be fairly general and occurs between a variety of different carbon atoms.
This through-space shift of a palladium moiety is apparently mechanistically important, and it
is also synthetically useful, because it provides an alternative way to introduce a palladium
moiety into an organic molecule. At this point, palladium migration chemistry has been
successfully employed to prepare numerous heterocycles and carbocycles.

The Larock group has also developed chemistry, that involves the facile coupling of
nucleophiles and arynes readily generated from silylaryl triflates. The carbanion generated
from nucleophilic attack on an aryne appears to be able to further attack a neighboring
electrophile to afford cyclization products. These tandem coupling-cyclization reactions have

been employed to prepare various heterocycles exhibiting interesting biological activities.
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ix

This dissertation is focused on palladium migration chemistry involving intramolecular C-
H activation processes and the tandem aryne coupling-cyclization reaction. The contents
described in this dissertation are published or will be published shortly.

Dissertation Organization

This dissertation is divided into four chapters. Each of the chapters is written according to
the guidelines for a full paper in the Journal of Organic Chemistry and is composed of an
abstract, introduction, results and discussion, conclusions, experimental section,
acknowledgments and references.

Chapter 1 describes a novel synthesis of m-allylpalladium complexes from simple aryl
iodides and alkynes via a consecutive aryl to vinylic to allylic palladium migration. This
process presumably proceeds by carbopalladation of the alkyne, consecutive vinylic to aryl to
allylic palladium migration, and subsequent displacement by a pivalate anion. This multiple
migration process appears to involve an equilibrium between organopalladium(IV) hydrides
and organopalladium(Il) intermediates. The results from deuterium labeling experiments are
consistent with the proposed mechanism. This chapter also reports an investigation of the
reaction mechanism of the aryl to aryl palladium migration process. It appears that
palladacycle(IV) hydrides or palladacycle(Il) intermediates may both be involved, and a
proton transfer mechanism is not favored.

Chapter 2 describes a synthesis of substituted carbazoles, indoles and dibenzofurans by the
palladium-catalyzed cross-coupling of alkynes and appropriately substituted aryl iodides.
This process proceeds by carbopalladation of the alkyne, a heteroatom-directed vinylic to aryl

palladium migration, and ring closure via intramolecular arylation or a Mizoroki-Heck
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reaction. Results from deuterium labeling experiments are consistent with the proposed
mechanism.

Chapter 3 describes the preparation of biologically-interesting fluoren-9-one and xanth-9-
one derivatives by a novel aryl to imidoyl palladium migration, followed by intramolecular
arylation. The fluoren-9-one synthesis appears to involve both a palladium migration
mechanism and a C-H activation mechanism through an unprecedented organopalladium(IV)
hydride intermediate. The results from the deuterium labeling experiments are consistent with
the proposed dual mechanism.

Chapter 4 reports the synthesis of xanthone, thioxanthone and acridone derivatives from
the coupling-cyclization of silylaryl triflates and substituted benzoates. The reaction of
silylaryl triflates, CsF and ortho heteroatom-substituted benzoates affords a general and
efficient way to prepare biologically-interesting xanthones, thioxanthones and acridones.
This chemistry presumably proceeds by a tandem intermolecular nucleophilic coupling of the
benzoate with an aryne and subsequent intramolecular electrophilic cyclization.

Finally, all of the 'H and *C NMR spectra of the starting materials and products are

compiled in appendices A-D.
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CHAPTER 1. CONSECUTIVE VINYLIC TO ARYL TO ALLYLIC PALLADIUM

MIGRATION AND ARYL TO ARYL PALLADIUM MIGRATION

Based on a communication published in the Angewandte Chemie International Edition and a
full paper accepted by the Journal of the American Chemical Society
Jian Zhao and Richard C. Larock*
Department of Chemistry, lowa State University, Ames, 1A 50011

larock@iastate.edu

Abstract. A novel synthesis of m-allylpalladium complexes from simple aryl iodides and
alkynes is disclosed. This process presumably proceeds by carbopalladation of the alkyne,
consecutive vinylic to aryl to allylic palladium migration involving intramolecular C-H
activation, and subsequent displacement by a pivalate anion. This migration process appears
to involve an equilibrium between organopalladium(IV) hydrides and organopalladium(II)
intermediates. The results from deuterium labeling experiments are consistent with the
proposed mechanism. The reaction mechanism of an aryl to aryl palladium migration process
has also been investigated. It appears that palladacycle(IV) hydrides or palladacycle(Il)

intermediates may both be involved, and a proton transfer mechanism is not favored.

Introduction
Palladium-catalyzed reactions have found numerous applications for constructing new
bonds in organic synthesis. Organopalladium intermediates are often generated by oxidative

addition of an organic halide or triflate, the transmetallation of an organometallic species, or
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the direct C-H activation of an arene, but the former process is the most frequently used
method to introduce a palladium moiety into an organic molecule. After the organic halide or
triflate has undergone oxidative addition to Pd(0), the metal usually stays where the halogen
or triflate originally resides, and subsequent bond formation occurs at this position too.

However, there are some examples in which the bond forming reaction does not occur at
the position where oxidative addition takes place. The rearrangement of a palladium moiety
along a saturated hydrocarbon chain by a sequence involving Pd-H elimination and
subsequent readdition has been disclosed and developed into very useful methodology.1
There are also a few reports of the “through-space” migration of palladium between remote
carbons. The synthesis of 9-benzylidene-9H-fluorenes from diphenylacetylene and aryl
halides has been reported by Larock, et al., and a mechanism involving facile 1,4-migration
of palladium between a vinylic position and an arene has been proposed.2 Larock et al. and
Gallagher et al. both observed palladium migration between the ortho positions of biaryls in
the Heck reaction of unsymmetrical o-halobiaryls with ethyl acrylate (eq. 1).> Aryl to
benzylic4 and alkyl to aryl5 palladium migrations have also been reported.

X

X
O P Ml + ‘/COZEt

+ COQ Et

| O ~x_CO,Et I

X = Me, OMe, NMez, COgEt, N02

(1)

n-Allylpalladium complexes are usually generated by the oxidative addition of allylic
compounds bearing a good leaving group.6 Alternatively, the reaction of organopalladium

compounds with 1,3- and 1,2-dienes can also afford n-allylpalladium complexes.” Although
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n-allylpalladium chemistry has been extensively investigated and become a very useful
methodology in organic synthesis,8 there have been few recent reports on developing new
ways of generating m-allylpalladium complexes from simple starting materials.

Recently, we communicated a novel synthesis of m-allylpalladium complexes from the
coupling of aryl halides and acetylenes (eq. 2).> We now wish to provide a full account of
this consecutive vinylic to aryl to allylic palladium migration involving multiple C-H
activation processes, which provides a new route to prepare m-allylpalladium intermediates.
This chemistry presumably proceeds by carbopalladation of the alkyne, consecutive vinylic to

aryl to allylic palladium migration, and subsequent displacement by a pivalate anion.

(<Pd\x

X
/©/ + Me——_R2 _cat Pd @)
R R?

R1

For the aryl to aryl palladium migration in biaryls, we have proposed a mechanism which
proceeds via a palladacycle(Il) or a palladacycle(IV) hydride involving C-H activation
processes, and this mechanism is supported by calculations carried out by Jenks, et al.’’
However, an alternative mechanism which involves proton transfer has also been proposed
and supported by other calculations.®® Since the theoretical calculations are apparently not

conclusive, experimental evidence obtained from appropriately designed systems is highly

desirable for a clear picture of the aryl to aryl palladium migration mechanism to emerge.

Results and Discussion
Optimization Studies. In order to obtain “optimal” reaction conditions for the consecutive
vinylic to aryl to allylic palladium migration reaction, we first employed the reaction of

methyl 4-bromobenzoate and 4,4-dimethyl-2-pentyne as our model system. All the
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optimization results were summarized in Table 1. Methyl 4-bromobenzoate and 4,4-
dimethyl-2-pentyne were first treated with 5 mol % Pd(OAc),, 5 mol %
bis(diphenylphosphino)methane (dppm), 2 equiv of NaOAc in 10 mL of N,N-
dimethylformamide (DMF) solvent at 100 °C. After 1 d of reaction, none of the desired
product was observed (Table 1, entry 1). Repeating this reaction in the presence of n-BusNCI
(TBAC), a trace amount of the ester product was evident by GC-MS analysis (entry 2).
When CsO,CCMe;s (CsPiv) was employed as the base, surprisingly, a 19% yield of an ester
mixture was obtained (entry 3). Running the reaction in the presence of TBAC does not
improve the yield (entry 4). The reaction using CsOAc as the base does not afford any
product. Changing the ratio of aryl halide and alkyne decreased the reaction efficiency
(entries 6 and 7). We also ran the reaction in the presence of water, which presumably should
increase the solubility of the CsPiv base. However, the yield is lower (entry 10). Assuming
the reaction efficiency could be improved by trapping the generated m-allylpalladium
complex with good nucleophiles, we ran the reaction in the presence of morpholine and
diethyl malonate. Unfortunately, we did not see any of the desired amine or ester products
(entries 9 and 10). We then conducted the reaction in more dilute conditions, and a lower
yield was observed (entry 11). When the reaction was run using 10 mol % Pd(OAc), and 10
mol % dppm, a 27% yield of a mixture of esters was obtained (entry 12). Repeating the
reaction under more concentrated conditions affords a 35% yield of the ester products (entry
13). We then increased the reaction temperature to 125 °C, and a slightly higher 42% yield
was obtained (entry 14). Finally, we switched the solvent to N,N-dimethylacetamide (DMA)
and a 50% yield of the ester mixture was isolated by flash chromatography (entry 15).

Running the reaction at a higher temperature does not improve the reaction efficiency (entry
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Table 1. Optimization Studies”

Br Me MesCCO, MesCCO, 0,CCMes
+ | | X -Bu + X + t-Bu
Co.et  BY Eoc EtO,C rBu
3a 3b  EO,C 3¢
entry (eﬁfi(v) (Ael(iir\lzf): CZ‘; base solvent additive tf(fgf)’ ' (305:: %/Le l;c)

1 1 1 5 2NaOAc DMF 100 -

2 1 1 5 2NaOAc DMF 1 TBAC 100 trace

3 1 1 5 2CsPiv DMF 100 19 (3:3:4)

4 1 1 5 2CsPiv. DMF 1 TBAC 100  18(3:3:4)

5 1 1 5 2CsOAc DMF 100 -

6 2 1 5 2CsPiv DMF 100 14 (3:3:4)

7 1 2 5 2CsPiv DMF 100 15 (3:3:4)

8 1 1 5 2CsPiv.  DMF 5 H,0 100 5(3:3:4)

9 1 1 5 2CsPiv DMF morpiohne 100 -

10 | | 5 2CsPiv DMF I5n gll(‘;’g;ﬁ 100 i

11 1 1 5 2CsPiv DMF 100 11 (3:3:4)°

12 1 1 10 2CsPiv DMF 100 27 (3:3:4)

13 1 1 10 2CsPiv DMF 100 35(1:1:2)°

14 1 1 10 2CsPiv DMF 125 (1:;:210)0

15 1 1 10 2CsPiv DMA 125 0
(1:2:18)

16 1 1 10 2CsPiv DMA 140 A
(1:2:20)

4All reactions were conducted on a 0.5 mmol scale in 10 mL of solvent for 24 h, and the
ratio in parentheses was determined by '"H NMR spectroscopy (sealed vial, under Ar).
This reaction was run in 20 mL of DMF solvent. “This reaction was conducted in 5 mL of
DMA.
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16). We also conducted the reaction under microwave heating conditions, but only a 44%
yield of the product was obtained after 20 min. Therefore, the best conditions so far
discovered for this transformation are: 10 mol % Pd(OAc),, 10 mol % dppm, 125 °C, and 5
mL of DMA in the presence of 2 equiv of CsO,CCMe;.

Reaction Scope and Limitations. After we had good reaction conditions in hand, we
investigated the reaction scope and limitations as shown in Table 2. The reaction of p-
iodoanisole and 1-phenyl-1-propyne under our usual palladium migration conditions using
Cs0O,CCMes; as the base has been observed to give a 20% yield of a 1:1 E/Z

Table 2. Multiple Palladium Migration®

X MesCCO5 MesCCO, R?
Me 5
cat. Pd° ~ R N 0,CCMey
+ | | — > + +
2 1 R1 R2
R’ R R a b R c
entry X R! R’ products % yield (a:b:c)

1 I OMe Ph 1a/b 20 (1:1:0)°

2 Br H t-Bu 2a/b, 2¢ 35 (1:2:7)°

3 1 H t-Bu 2a/b, 2¢ 44 (1:2:12)°
4 Br CO,Et t-Bu 3a/b, 3¢ 50 (1:2:18)°
5 Br Cl t-Bu 4a/b, 4c¢ 42 (1:2:20)°

2All reactions were conducted on a 0.5 mmol scale for 24 h, and the ratio of
ArX to alkyne was 1:1 (sealed vial, under Ar). °This reaction was run using 5
mol % Pd(OAc),, 5 mol % dppm, 100 °C, 10 mL of DMF, and 2 equiv of
CsO,CCMes. “The reactions reported in entries 2-5 were run using 10 mol %
Pd(OAc),, 10 mol % dppm, 125 °C, and 5 mL of DMA in the presence of 2
equiv of CsO,CCMe;.

mixture of 2-(4-methoxyphenyl)-3-phenyl-2-propenyl pivalate (la/b). The reaction of
bromobenzene with 4,4-dimethyl-2-pentyne affords a 35% yield of a 1:2:7 mixture of three

esters 2a, 2b and 2¢ (entry 2). When iodobenzene was employed, a 44% yield of a mixture of

www.manaraa.com



three esters 2a, 2b and 2¢ was obtained in a 1:2:12 ratio (entry 3). The reaction using 4-
chloro-bromobenzene affords a 42% yield of the products (entry 5). When R” is a Ph group,
only two isomers are generated. When R? is a #-Bu group, the yield is higher and three
isomers are generated. The ratio of the three isomers is dependent on the reaction time and
temperature. It appears that longer times and higher temperatures generally favor the
formation of isomer c.

Reaction Mechanism. Although these reactions only proceed in relatively low yields, and
three isomers are usually obtained, which somewhat limits applications in synthesis, the
mechanism of this unique transformation is fairly important and quite interesting. This
process appears to involve palladium migration from a vinylic to an aryl to an allylic position
and subsequent displacement by a pivalate anion (Scheme 3). Intermediate A, generated by
oxidative addition of the aryl halide to Pd(0), adds to the alkyne to produce vinylic palladium
intermediate B, which apparently then oxidatively adds the neighboring C-H bond to the
palladium to form palladacycle c.' Subsequent reductive elimination affords D. This
results in palladium migration from a vinylic to an aryl position via C-H activation, a process
we have reported earlier.’ To initiate a second C-H activation, the palladium moiety
apparently rotates into the vicinity of the methyl group. Insertion of palladium into the
neighboring C-H bond affords palladacycle E, which undergoes reductive elimination with
transfer of the palladium moiety to the allylic position. This unprecedented migration process
generates palladium intermediate F, which rapidly isomerizes to the corresponding -
allylpalladium species G. This unusual process provides a new route for the preparation of
n- allylpalladium species, which have proven very versatile as intermediates in organic

synthesis. The three isomeric ester products are presumed to arise by attack of the pivalate
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anion on the palladium intermediate G. This proposed mechanism indicates that the
migration of palladium is always accompanied by a simultaneous migration of hydrogen in
the opposite direction. Thus, the observation of a hydrogen or deuterium shift should provide
convincing evidence for the palladium migration, since the shift of palladium is technically

difficult to observe.

Scheme 3. Proposed Mechanism

(de\x

ArPdX —>

R’ |v|e3cco2
Pd
Me
R Pd

ab+c

PdX Me Me
R2 R?

- H
H R PdX D

Bromobenzene-ds (99% deuterium) and 4,4-dimethyl-2-pentyne were allowed to react with

10 mol % Pd(OAc),, 10 mol % bis(diphenylphosphino)methane (dppm), and 2 equiv of
CsO,CCMes in DMA at 125 °C (Table 3, entry 1). E and Z-4,4-dimethyl-2-phenylpent-2-
enyl pivalate (12a/b) and 1-tert-butyl-2-phenyl-2-propenyl pivalate (12¢) were obtained in a
ratio of 1:2:7. The formation of the deuterated product is proposed in Scheme 4. The ester
12¢ was isolated in a 20% yield and found to contain 40% deuterium in the allylic position

and 95% hydrogen in the ortho position of the aromatic ring. Since the "H NMR spectrum of
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12¢ could result from the presence of a mixture of esters 18 and 19 in an appropriate ratio

(Scheme 5), it was important to establish the exact nature of these products. A determination

of the molecular weight of these ester products should clarify the situation. However, the

vinylic position in 12a/b and the allylic position in 12¢ also contain either a hydrogen or a

deuterium, which complicates the situation and makes the analysis more difficult.

Table 3. Deuterium Labeling Experiments®

OQCCMeg
Me 10% Pd(OAc)s Y +BU
@Br || Qedeem 2 tBu 05CCMeg
X 2 CsPiv X | Xg
5 ™ Z z
t-Bu DMA, 100 °C
12a/b-15a/b 12c-15¢
entry X additive  product Y Z

1 D - 12¢ 95% H 40% D
2 D 10 D,O 13c 55% H 75% D
3 D 10 H,O 14c 95% H 40% D
4 H 10 D,O 15¢ 40% D 40% D

“The ratio of deuterium to hydrogen has been determined by 'H NMR
spectroscopy.

To eliminate the interference from the vinylic position, the mixture of ester products was

treated with Oz and Me,S at -78 °C, and then the ketones 16 and 17 obtained were analyzed

by GC-MS (Scheme 5). Presumably, ketones 16 and 17 will undergo fragmentation in the

mass spectrum to afford the most stable oxonium cation (m/z 109), but a mixture of 18¢ and

19¢ would afford two different oxonium cations (m/z 108 and m/z 110), which should be

easily detected by mass spectral analysis.

Indeed, from the MS spectrum obtained, the

intensity of the peaks m/z 108 (C;D3H,0") and m/z 110 (C;Ds0") are less than 5% of the
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Scheme 4. Proposed Formation of the Deuterium Labeled Product

D D Me D Me
D X D t-Bu D
catid(O) AN £Bu
D D Me—= t—BuD D PdX D /Pd\x
D
D HH ] I s b Me
Pd D
D D O 0CCMes | tBu D PdX
12¢ D 7
D | Hx
D D
Me3CCOZ-

D 8
) N\ H
PdX X
i (PaX H ~ph +BU
D D D t-Bu D
. D
D D t-Bu D D D b b
D 41 - D 4 D 9
Scheme 5. Analysis of the Deuterated Esters
T 0,CCMe3z ™| H 0,CCMes
D X tBu D o
D D D(H) D D H
D X
D 12a/b 1.0, D 16 GC-MS =0
H 2. Me,S - 5 5 ®
tBu
D 0,CCMegy D 0,CCMeg D
D(H t-Bu
D p P D(H) C,D4HO*
D D D m/z 109
| 12¢ ] L D 17 _|
H — _
D tBu
OQCCMe3 H D
D(H)
D H D SN D N
} 0 =0
D, 18 _ 105 _ GCMS D + ®
D 2. Me,S D H D D
D t-Bu D D
! %CCM% C,DaH,0* C,DgH50*
D p PH) m/z 108 m/z 110
D 19¢ - -
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peak m/z 109 (C;D,HO™), which indicates the former two species are not important. Thus,
the hydrogen attached to the phenyl ring in compounds 12a-c is only incorporated into one of
the two ortho positions of the arene.

The results from this deuterium labeling experiment are consistent with the proposed
mechanism, except for the fact that a relatively low allylic deuterium content is observed.
However, the deuterium content can be increased by adding 10 equiv of D,0O to the reaction.
(E/Z)-4,4-Dimethyl-2-phenylpent-2-enyl pivalate (13a/b) and 1-tert-butyl-2-phenyl-2-
propenyl pivalate (13¢) were obtained in a ratio similar to what was obtained from the
reaction conducted in the absence of D,O. The resulting ester 13¢ contained 55% of one
hydrogen in the ortho position of the arene and 75% deuterium in the allylic position (Table
3, entry 2). The product esters 13a-c¢ were treated with O3 and Me,S, and the ketones
obtained were analyzed by GC-MS. The intensity of the peak m/z 110 (C;Ds0") and the
peak m/z 109 (C;D4HO") are almost the same, which is consistent with the ratio (about 1:1)
of hydrogen and deuterium observed in the 'H NMR spectrum. The loss of deuterium in the
allylic position of 13c¢c presumably arises by deuterium/hydrogen exchange through an
equilibrium between organopalladium(IV) intermediate S and palladacycle 6 or perhaps
direct exchange of the metal hydride/deuteride in intermediate S5 (Scheme 4). The deuterium
incorporation in the allylic position is dependant on the competition between H/D exchange
and palladium migration, and it appears that neither one is dominant in this case. The
reaction of bromobenzene-ds and 4,4-dimethyl-2-pentyne was repeated in the presence of 10
equiv of H,0O, and the esters (E/Z)-4,4-dimethyl-2-phenylpent-2-enyl pivalate (14a/b) and 1-
tert-butyl-2-phenyl-2-propenyl pivalate (14c¢) obtained contain the same amount of vinylic

deuterium incorporation and aryl hydrogen incorporation as esters 12a-c (entry 3). A similar
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exchange of hydrogen and deuterium has been observed in aryl-norbornyl palladacycles.12
When bromobenzene-Hs and 4,4-dimethyl-2-pentyne were allowed to react in the presence of
10 equivs of D0, the ester 15¢, which was obtained, had incorporated 40% deuterium in one
of the ortho positions of the arene and 40% deuterium in the allylic position (entry 4). This
experiment suggests that H-D exchange occurs during both of the two migration steps.
Although the experimental data is consistent with the proposed aryl to allylic palladium
migration mechanism, an alternative mechanism involving an organopalladium(Il)
palladacycle and an allylpalladium-arene complex stabilized by a m, n' interaction is also
possible (Scheme 6).13

Scheme 6

We have also carried out a palladium migration reaction using aryl iodide 20, which would
be expected to generate arylpalladium intermediate D (see Scheme 3) directly (Table 4, entry
1). This species should undergo palladium migration to produce the same mixture of pivalate
esters as we obtained via the consecutive rearrangements discussed earlier. Under the same
reaction conditions used previously, we have obtained a 65% yield of the anticipated product
mixture 2a, 2b and 2¢ in a 1:2:20 ratio. Although the ratio of the regioisomer 2c to 2a/b is a
little higher than that observed in the consecutive migration process, the results are still
consistent with our proposed mechanism.

We have also examined the reaction of aryl iodide 21 under our usual reaction conditions,

but at 145 °C (entry 2). This reaction affords a 45% yield of the allylic pivalate 25. Thus, it
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appears that the arylpalladium intermediate corresponding to 21 is able to undergo migration

to a secondary allylic position. Aryl iodide 22 was also prepared and treated in the same

fashion. After one day of reaction, a 55% yield of two isomeric esters 26a/b was obtained

with a small amount of inseparable impurities (entry 3).

Table 4. Aryl to Allylic Palladium Migration®

entry aryl iodide product % yield
M630002
Me ©)\/fBU 2a/2b
X -Bu 65
! ©fy 20 (1:2:20)
| tBu 2¢
0,CCMe;
Me Me Me_ Me
2 ‘ Me 21 ‘ Me 25 45°
o SaL:
| OZCCMe3
Me ‘ MeSCCOQ
3 O X 22 N O 26a/b 55¢
. (" en
O Me3CCO, O
4 O Q 23 27 messy
Br
M930002 Ph
28 0

Ph
5 24
|

R

“The reaction was conducted on a 0.25 mmol scale using 10 mol % Pd(OAc),, 10 mol
% dppm, 125 °C, and 5 mL of DMA in the presence of 2 equiv of CsO,CCMes;. ®The
‘The yield was determined by 'H NMR
spectroscopy due to inseparable impurities.

reaction was conducted at 145 °C.

When aryl bromide 23 was subjected to our standard migration conditions, the reaction was

very messy and we did not observe any of the desired ester product for reasons that we still

do not understand (entry 4). The reaction employing 24 does not afford the expected ester

www.manaraa.com



14

28, but about 20% of [1,1';4',1"]terphenyl was obtained after one day of reaction, which
presumably is due to facile p-H elimination in the w-allylpalladium intermediate and
subsequent palladium-catalyzed dehydrogenation of the resulting cyclohexadiene (entry 5).

Mechanistically, an intermediate like D (Scheme 3) could also be generated by the
carbopalladation of the allene 4,4-dimethyl-1,2-pentadiene (29), which might arise by
isomerization of 4,4-dimethyl-2-pentyne (Scheme 7). However, this process when run with
pentadeuterated bromobenzene in D,O would not introduce a hydrogen into the ortho
position of the arene or a deuterium into the allylic position of the final ester

Scheme 7. Possible Allene Mechanism

D
HH D
D X 3
11 . ﬁ e
D D |J\ D D H
D
0,CCMej Oz
t-Bu

product, unless the palladium moiety could reversibly migrate from the allylic to the aryl to

31c

the vinylic position. Only then could one observe a hydrogen in the ortho position of the
arene and a deuterium in the vinylic position, plus deuterium incorporation into the allylic
position.

To test the reversibility of this palladium migration process, the reaction using aryl iodide
20 was conducted in the presence of 10 equiv of D,O (Scheme 8). The isolated product 2¢

contained 40% of deuterium in one of the ortho positions of the arene by GC-MS analysis,
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and no deuterium in the vinylic or allylic positions. Ester 2¢ was treated with O3 and Me,S,
and the ketone obtained was analyzed by GC-MS. The peak m/z 105 (C;Hs0") and the peak
m/z 106 (C;DH4O™) exhibited similar intensities, but the peak m/z 107 (C;D,H;0™) displayed
less than 5% of the intensity of the peaks at m/z 105 and m/z

Scheme 8. Reversibility of Palladium Migration

OPiv
— Me —— | Me o
X FBU_Pd(0) tBu
\ S
+Bu 10 D,O f
Pd—H 20
'| 1 , 2ab
D .
‘ Ve \ Pdl Me tBu
>~ _ Bu H OPiv
N—tBu 2¢
Pd
+HI l 1
“ DI

I ya N
o -

OPiv = OzCCMea

Me I\ /H
Pd™\__ tBu
N tBu
I?d—D
d™\__ +Bu
+ Hi

106, which indicates that deuterium is incorporated in only one of the two ortho positions of
the arene. This suggests that the vinylic to aryl migration is not a reversible process. Because
no deuterium incorporation in the methylene or allylic positions was observed, we can also
rule out reversible palladium migration from the allylic to the aryl position.

Mechanistic Studies on Aryl to Aryl Palladium Migrations. Recently, we and others
observed a palladium migration process between the ortho positions of unsymmetrical biaryls

(eq. 1).> Heck and Suzuki reactions have been employed to trap the migrated palladium
q
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moiety.lo Plus, this aryl to aryl palladium migration process has been employed to prepare
numerous heterocycles and caurbocycles.3 ¢

We propose a possible mechanism (Scheme 9) for the aryl to aryl palladium migration in the
organopalladium intermediates derived from o-halobiaryls, which involves oxidative addition
of the aryl halide to Pd(0) to generate intermediate i, which can either (a) undergo oxidative
addition of a neighboring C-H bond to produce a hydridopallada(IV)cycle (ii), followed by
reductive elimination of CH to generate either iii or i, or (b) electrophilic palladation to
generate intermediate iv, followed by either protonolysis of a C-Pd bond to generate i or iii or
oxidative addition of HX to generate ii. With regard to the mechanism, we would like to
point out that not all ligands on palladium are shown for simplicity. We believe that the
intermediacy of iv is unlikely for two main reasons. First, it is improbable that intermediate
iv could react with HI under the basic reaction conditions we have employed. Second,
Catellani and Chiusoli have demonstrated that pallada(I)cycles analogous to intermediate iv

Scheme 9. Plausible Mechanism for Aryl to Aryl Palladium Migration

www.manaraa.com



17

easily undergo oxidative addition to aryl and alkyl halides to generate palladium(IV)
intermediates generating characteristic polycyclic compounds,14 which have not been
observed under our reaction conditions. As a result, we favor the reversible interconversion
between i and iii via hydridopallada(IV)cycle ii. Organopalladium(IV) species are well

11
known,

although no such hydride-containing species have ever been isolated. It is also
important to realize that palladium migration involves intramolecular C-H activation,
possibly through an electrophilic palladium species.

To better understand this aryl to aryl palladium migration process, we have carried out

additional mechanistic studies. Our first experiments involved incorporation of deuterium

into the product by running one of these migration reactions in the presence of a large excess

Scheme 10. Deuterium Labeling Experiments
- . Pd, —— Pd + HX Pd’
PdX O H O D
- [ D0 — |

I PdX D I D I PdX
D Pd D D D
e <illlae

J Z>CO,E J Z COLE J/\COZEt

I D ‘ D D E D
X COEt X COEt D ~_COEt D . COoEt
m/z 252 O m/z 253 O m/z 254 O m/z 255

VeV

x

O O y
<
\r
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of D,0O. In the presence of D,O, deuterium incorporation in the ortho positions would be
expected if the migration proceeds through formation of iv. In fact, if the equilibration is
substantially faster than the reaction with an olefin (the Heck reaction), then virtually
complete D incorporation would be expected in the three available ortho positions, as shown
in Scheme 10. Lack of deuterium incorporation would, of course, imply that no intermediate
with exchangeable hydrogen was involved, and thus eliminate iv. The rate of hydrogen
exchange in an intermediate like ii is unknown. However, if it were slow enough, migration
could occur without incorporation of deuterium.

Thus, we first treated 2-iodobiphenyl and 4 equiv of ethyl acrylate with 5 mol % Pd(OAc),,
5 mol % dppm, 1 equiv of TBAC, 2 equiv of NaHCO3 in 1 mL of DMF and 0.05 mL of D,O
(conditions A) (Table 5, entry 1), conditions under which migration has not previously been
observed."” No deuterium incorporation in the ortho positions of the coupled product is
expected, because only the original position of the iodide substituent is ever activated. This
expectation was met for the ester product, as analyzed by 'H NMR spectroscopy and GC-MS.

However, when this same reaction was conducted using 0.2 mL of D,0 instead of 0.2 mL
of H,O (condition B), approximately 2 of the ortho hydrogens on average were substituted by
deuterium, as indicated by the '"H NMR spectrum of the ester product obtained (entry 2). A
broad peak in the ’H NMR spectrum at 7.4 ppm was also observed, consistent with deuterium
incorporation occurring at more than one carbon atom. Mass spectral data indicated that
comparable amounts of the nondeuterated (m/z 252), monodeuterated (m/z 253), dideuterated
(m/z 254), and trideuterated (m/z 255) esters were observed.

This result indicates that our “equilibrating” conditions (conditions B) are not such that the

migration of the palladium species is orders of magnitude faster than the coupling step.
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Otherwise, the overwhelming majority of material would be trideuterated. However, it does
not clearly distinguish between the intermediacy of ii and iv, because, while it is obvious that
H exchange would occur with formation of iv, it is also reasonable that H exchange could
occur with ii as the key intermediate even if iv were never formed. A second experiment
involving the formation of iv via an alternate synthetic pathway was carried out (Scheme 11).
Biphenylene has been reported to react under some conditions with Pd(0) to generate

Table 5. Mechanistic Studies®

entry Arl % Pd additive product(s) % yield %d

| X COEt
1 @ 5 10 D,O @V 90? 0
Ph Ph
2 @I 5 10 D,O O X COEt 90° 67
Ph
D

. CO,Et
3 OIO 5 10 D,O @V 0ob _
Ph

4 5 10 D,O 0o° -
1 DCI1
5 100 10 D,O 0° .

*Conditions A: the reaction was run using 0.25 mmol of the iodobiaryl, 4 equivs of ethyl
acrylate (EA), 2 equivs of NaHCOs, and 1 equiv of n-BusNCI1 (TBAC), where indicated, in
4 ml of DMF at 100 °C. "Conditions B: the reaction was run using 0.25 mmol of the
iodobiaryl, 1 equiv of ethyl acrylate (EA), 2 equivs of CsPiv, in 4 ml of DMF at 100 °C.
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iv (X = H), which can also undergo Heck and Suzuki couplings.15

Assuming this process
will occur under our “optimal” equilibration reaction conditions, the same ester products 32
should be observed from biphenylene as from 2-iodobiphenyl.

However, biphenylene was not an effective precursor under our standard palladium
migration conditions. When biphenylene was allowed to react with 1 equiv of ethyl acrylate
(0.25 mmol) in the presence of 5 mol % Pd(OAc),, 5 mol % dppm, 2 equiv of CsPiv in 3.8
mL of DMF and 0.2 mL of D,0O, GC-MS spectral analysis indicated that, after reaction for 1
day, none of the anticipated Heck product 32 was obtained and only the starting biphenylene
was present (Table 5, entry 3). Since one equiv of HI acid is usually generated in our Heck
palladium migration reactions, this reaction was repeated in the presence of 1 equiv of DCI.
Again, none of the anticipated Heck product was obtained. This reaction was also conducted
using 1 equiv of Pd(OAc),. After reaction for 1 day, only biphenylene was evident by GC-

MS spectral analysis.

Scheme 11

O & o
_Pd0). Pd + O COnEt COEt
W 9 ) w

This result is, again, mechanistically ambiguous regarding the palladium migration. The
most likely cause of the problem may be that the conditions were not conducive to palladium
insertion into the biphenylene C-C bond. Indeed, Gallagher has demonstrated a kinetic
preference for palladium insertion into aryl bromides over biphenylene.16 Alternatively, our
failure to observe Heck-type products in these biphenylene reactions may occur because iv is

reversibly formed, but unreactive, under our reaction conditions (and thus excluded
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mechanistically from the palladium migration chemistry). However, without any other

evidence for the formation of iv, such a conclusion cannot be drawn.

Conclusions

We have established an unusual consecutive vinylic to aryl to allylic palladium migration
process, which affords a novel new way to generate m-allylpalladium complexes. This
migration process appears to involve an equilibrium between organopalladium(IV) hydrides
and organopalladium(Il) intermediates, which undergo facile exchange with a H source in
solution. However, we cannot rule out direct exchange of the palladium(IV) hydride. A
mechanistic study of the aryl to aryl palladium migration process provides some new
information. For example, the palladium shift is a reversible process and a proton shift

mechanism is not favored. However, the results are still mechanistically ambiguous.

Experimental Section

General Procedures. All 'H and °C NMR spectra were recorded at 300 MHz and 75.5
MHz respectively. Thin layer chromatography was performed using commercially prepared
60-mesh silica gel plates (Whatman KO6F), and visualization was effected with short
wavelength UV light (254 nm) and a basic KMnO, solution. High resolution mass spectra
were recorded on a Kratos MS50TC double focusing magnetic sector mass spectrometer
using El and 70 eV.

Reagents. All reagents were used directly as obtained commercially unless otherwise
noted. Anhydrous forms of THF, DMF, DMA, diethyl ether, ethyl acetate, hexanes, and 4,4-
dimethyl-2-pentyne were purchased from Lancaster Synthesis, Inc.  lodobenzene,

bromobenzene, bromobenzene-ds, p-iodoanisole, p-chloroiodobenzene, ethyl 4-
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bromobenzoate, and 1-phenyl-1-propyne, were purchased from Aldrich Chemical Co., Inc.
Cesium pivalate was prepared according to the procedure of Campo and Larock.”
(E)-2-(2-Iodophenyl)-4,4-dimethyl-2-pentene (20).

(E)-2-Todo-4,4-dimethyl-2-pentene was prepared by a literature procedure,'’ and subjected
to a Suzuki reaction with 2-bromophenylboronic acid. The reaction employed 2.0 mmol of
vinylic iodide, 2.5 mmol of arylboronic acid, 5 mol % Pd(OAc),, 10 mol % PPhs, and 2 equiv
of Na,CO;3 in 2 mL of water and 8 mL of DMF at room temperature for 12 h. The aryl
bromide obtained was treated with 1.2 equiv of n-BuLi at -78 °C, and then 1.2 equiv of I, to
afford aryl iodide 20: "H NMR (CDCl3) § 1.23 (s, 9H), 2.02 (d, J = 1.5 Hz, 3H), 5.27 (q, J =
1.5 Hz, 1H), 6.90 (td, J = 7.5, 1.8 Hz, 1H), 7.15 (dd, J = 7.5, 1.8 Hz, 1H), 7.27 (td, J = 7.5,
1.8 Hz, 1H), 7.81 (dd, J = 7.6, 1.8 Hz, 1H); °C NMR (CDCl3) 19.3, 30.9, 33.0, 99.0, 128.0,
128.2, 128.9, 138.2, 139.2, 141.1, 151.9; IR (CDCls) 2960, 2904, 2866, 1461 cm™; HRMS
m/z 300.0379 (calcd for C;3H;71, 300.0375).
1-(2-Iodophenyl)-3, 3, 5, 5-tetramethylcyclohexene (21).

The corresponding aryl bromide was prepared utilizing a Suzuki reaction of 1-iodo-3,3,5,5-
tetramethylcyclohexene18 and 2-bromophenylboronic acid, and the resulting aryl bromide was
converted to the corresponding iodide by the n-Buli procedure reported earlier: 'H NMR
(CDCl3) 6 1.07 (s, 6H), 1.10 (s, 6H), 1.40 (s, 2H), 1.99 (d, J = 1.5 Hz, 2H), 5.33 (t, /= 1.5
Hz, 1H), 6.87 (td, J =7.4, 1.7 Hz, 1H ), 7.08 (dd, J = 7.5, 1.7 Hz, 1H), 7.24 (td, J = 7.5, 1.2
Hz, 1H), 7.80 (dd, J = 7.5, 1.2 Hz, 1H); >C NMR (CDCls) 30.5,31.2, 31.4,33.2, 43.5, 49.8,
98.8, 128.2, 128.3, 129.2, 136.5, 137.7, 139.5, 149.1; IR (CDCls) 2954, 2902, 2866, 1462

cm™'; HRMS m/z 340.0696 (calcd for C 6Hy;1, 340.0688).
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Representative procedure for the palladium-catalyzed migration reactions. The
appropriate  aryl halide (0.5 mmol), Pd(OAc), (5.6 mg, 0.025 mmol),
bis(diphenylphosphino)methane (dppm) (9.6 mg, 0.025 mmol) and CsO,CCMe; (CsPiv)
(0.234 g, 1.0 mmol) in DMA (5 mL) were stirred under Ar at 125 °C for 24 h. The reaction
mixture was allowed to cool to room temperature, diluted with diethyl ether (50 mL) and
washed with brine (30 mL). The aqueous layer was reextracted with diethyl ether (25 mL).
The organic layers were combined, dried (MgSQ,), filtered, and the solvent removed under
reduced pressure. The residue was purified by flash chromatography on silica gel.

(E)- and (Z)-2-(4-Methoxyphenyl)-3-phenyl-2-propenyl pivalate (1a/b).

'H NMR (CDCl3) & 1.13 (s, 9H), 1.15 (s, 9H), 3.81 (s, 3H), 3.84 (s, 3H), 4.89 (d, J = 1.4
Hz, 2H), 5.10 (s, 2H), 6.63 (s, 1H), 6.85 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 7.02-
7.45 (m, 15H); >C NMR (CDCl3) 27.3, 27.4, 39.0, 39.1, 55.4, 55.5, 62.2, 69.2, 114.0, 114.2,
127.2, 127.5, 127.8, 128.2, 128.5, 128.6, 129.1, 129.5, 130.2, 130.4, 131.6, 133.0, 136.0,
136.6, 137.0, 137.1, 159.2, 159.5, 178.3, 178.6; IR (CDCls) 2973, 2936, 1719 cm™'; HRMS
m/z 324.1731 (calcd for C21H2403, 324.1725).

When using 4,4-dimethyl-2-pentyne and ArX as the starting materials, GC-mass spectral
analysis of the products indicated three close peaks with the same m/z values, corresponding
to the three isomers reported, and the ratio of isomers was determined by '"H NMR
spectroscopy. Pure 2¢, 3¢ and 4¢ have been isolated from the respective product mixtures
and fully characterized, but we were not able to separate and obtain the pure a and b
stereoisomers from 2a/b, 3a/b and 4a/b. After column chromatography, we obtained 2a/b
containing a minor amount of 2¢ and 3a/b containing a minor amount of 3c. The 'H NMR

spectra reported for 2a/b and 3a/b were taken on those incompletely separated mixtures.
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(E)- and (Z)-4,4-Dimethyl-2-phenylpent-2-enyl pivalate (2a/b).

'H NMR (CDCl3) & 0.88 (s, 9H), 1.08 (s, 9H), 1.11 (s, 9H), 1.23 (s, 9H), 4.60 (d, J = 1.2
Hz, 2H), 5.07 (s, 2H), 5.70 (s, 1H), 5.95 (s, 1H), 7.14-7.53 (m, 10H).
1-tert-Butyl-2-phenyl-2-propenyl pivalate (2c).

Product 2¢ could be isolated from the product mixture: "H NMR (CDCl3) 6 0.86 (s, 9H),
1.27 (s, 9H), 5.19 (s, 1H), 5.30 (s, 1H), 5.41 (s, 1H), 7.22-7.34 (m, 3H), 7.55 (d, J = 6.8 Hz,
2H); C NMR (CDCl3) 26.6, 27.3, 35.7, 39.2, 81.7, 115.3, 127.2, 127.7, 128.6, 142.8, 148.6,
177.9; IR (CDCls) 2974, 2907, 2872, 1715, 1478 cm'; HRMS m/z 274.1936 (calcd for
CisH260,, 274.1933).

Bromobenzene-ds (99.5% deuterium) and 4,4-dimethyl-2-pentyne were allowed to react
using the reaction conditions reported in footnote ¢ of Table 1 to afford product 12c: 'H
NMR (CDCls) 6 0.86 (s, 9H), 1.27 (s, 9H), 5.19 (s, 1H), 5.30 (s, 1H), 5.41 (s, 0.6H), 7.55 (s,
0.95H).

The reaction of bromobenzene-ds and 4,4-dimethyl-2-pentyne conducted in the presence of
10 equiv of D,0 afforded product 13c: "H NMR (CDCl3) 6 0.86 (s, 9H), 1.27 (s, 9H), 5.19 (s,
1H), 5.30 (s, 1H), 5.41 (s, 0.27H), 7.55 (s, 0.55H). The product esters were treated with O
and Me,S, and the ketones obtained were analyzed by GC-MS. The intensity of the peak m/z
110 (C;D50") and the peak m/z 109 (C;D4HO™) were almost the same, which is consistent
with the ratio of hydrogen to deuterium (about 1:1) observed in the "H NMR spectrum.

Bromobenzene-Hs and 4,4-dimethyl-2-pentyne were allowed to react under the same
reaction conditions in the presence of 10 equiv of D,O to afford product 15¢: 'H NMR
(CDCl3) 6 0.86 (s, 9H), 1.27 (s, 9H), 5.19 (s, 1H), 5.30 (s, 1H), 5.41 (s, 0.60H), 7.55 (d, J =

6.8 Hz, 1.65H).
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Aryl iodide 20 was also subjected to our standard migration conditions in the presence of
10 equiv of D,O to afford product 12c¢: '"H NMR (CDCl3) 6 0.86 (s, 9H), 1.27 (s, 9H), 5.19 (s,
1H), 5.30 (s, 1H), 5.41 (s, 1H), 7.55 (d, J = 6.8 Hz, 1.55H).

(E)- and (Z)-Ethyl 4-[4,4-dimethyl-1-(pivaloyloxy)pent-2-en-2-yl]benzoate (3a/b).

'H NMR (CDCl3) § 0.78 (s, 9H), 1.07 (s, 9H), 1.10 (s, 9H), 1.24 (s, 9H), 1.36-1.42 (m, 6H),
4.33-4.40 (m, 4H), 4.60 (s, 2H), 5.09 (s, 2H), 5.75 (s, 1H), 6.02 (s, 1H), 7.23-7.24 (d, J = 7.8
Hz, 2H), 7.35 (d, J = 7.8 Hz, 2H), 7.95-8.00 (m, 4H).

Ethyl 4-[4,4-dimethyl-3-(pivaloyloxy)pent-1-en-2-yl]benzoate (3c).

Product 3¢ could be isolated from the product mixture: '"H NMR (CDCl3) 6 0.84 (s, 9H),
1.27 (s, 9H), 1.38 (t, J = 7.1 Hz, 3H), 4.36 (q, J = 7.1 Hz, 2H), 5.27 (s, 1H), 5.37 (s, 1H), 5.38
(s, 1H), 7.62 (d, J = 8.6 Hz, 2H), 8.00 (d, J = 8.6 Hz, 2H); °C NMR (CDCls) 14.6, 26.5,
27.3, 35.8, 39.1, 61.1, 81.5, 116.8, 127.1, 129.7, 130.0, 147.2, 148.0, 166.7, 177.9; IR
(CDCl3) 2975, 1711, 1478 cm™'; HRMS m/z 346.2150 (calcd for Cy H3004, 346.2144).
1-tert-Butyl-2-(4-chlorophenyl)-2-propenyl pivalate (4c).

Product 4¢ could be isolated from the product mixture: '"H NMR (CDCl3) 6 0.85 (s, 9H),
1.27 (s, 9H), 5.20 (s, 1H), 5.28 (d, J = 0.9 Hz, 1H), 5.31 (s, 1H), 7.27 (d, J = 8.4 Hz, 2H),
7.49 (d, J = 8.5 Hz, 2H); >C NMR (CDCl5) 26.6, 27.3, 35.8, 39.2, 81.6, 116.0, 128.5, 133.5,
141.4, 147.7, 177.9; IR (CDCls) 2972, 2907, 2872, 1716, 1479, 1091 cm; HRMS m/z
308.1547 (calcd for C3H,5ClO,, 308.1543).
4,4,6,6-Tetramethyl-2-phenylcyclohex-3-enyl pivalate (25).

'H NMR (CDCl3) § 0.98 (s, 3H), 1.05 (s, 12H), 1.11 (s, 3H), 1.15 (s, 3H), 1.41 (d, J = 13.2
Hz, 1H), 1.64 (d, J = 13.2 Hz, 1H), 5.63 (s, 1H), 5.84 (s, 1H), 7.20-7.31 (m, 5H); °C NMR

(CDCl) 26.0, 27.3, 27.31, 31.0, 32.5, 33.0, 35.3, 39.1, 45.8, 74.7, 126.4, 127.0, 1284,
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134.0, 138.9, 140.8, 178.1; IR (CDCl3) 2959, 1712, 1478 cm™; HRMS m/z 314.2246 (calcd

for C21H3002, 3142250)
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CHAPTER 2. SYNTHESIS OF SUBSTITUTED CARBAZOLES, INDOLES AND
DIBENZOFURANS BY DIRECTED VINYLIC TO ARYL PALLADIUM

MIGRATION

Based on a communication published in Organic Letters and a full paper published
in the Journal of Organic Chemistry
Jian Zhao and Richard C. Larock*
Department of Chemistry, lowa State University, Ames, 1A 50011

larock@iastate.edu

Abstract. Substituted carbazoles, indoles and dibenzofurans are readily prepared in moderate
to excellent yields by the palladium-catalyzed cross-coupling of alkynes and appropriately
substituted aryl iodides. This process proceeds by carbopalladation of the alkyne,
heteroatom-directed vinylic to aryl palladium migration, and ring closure via intramolecular
arylation or a Mizoroki-Heck reaction. Results from the deuterium labeling experiments are

consistent with the proposed mechanism.

Introduction

The palladium-catalyzed activation of unfunctionalized C-H bonds is considered a highly
atom-efficient and  environmentally-friendly  strategy  for  organic  synthesis.
Recently, a number of palladium migration examples involving intramolecular C-H
activation have been disclosed by our group and others."  This through-space shift of

palladium appears to be fairly general and can take place between a wide variety of carbon
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atoms. Specifically, vinylic to alryl,2 aryl to aryl,3 alkyl to auryl,4 and vinylic to aryl to allylic’
palladium migration processes have been reported. These novel palladium migration
processes are not only mechanistically important, but also synthetically useful, because they
afford an alternative way to introduce a palladium moiety into an organic molecule.

Recently, we reported a nitrogen-directed vinylic to aryl palladium migration, which
provides an efficient way to prepare biologically interesting carbazoles as shown in Scheme
1.2%°  This process proceeds by carbopalladation of the internal alkyne, and then the
palladium moiety migrates from the vinylic position to the aryl position through an
intramolecular C-H activation process. The arylpalladium intermediate generated

subsequently undergoes intramolecular arylation to afford the carbazole products. Herein, we

Scheme 1. Synthesis of Substituted Carbazoles via Vinylic to Aryl Palladium Migration
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wish to report a complete account of this nitrogen-directed palladium migration, an extension
of this methodology to the synthesis of biologically interesting dibenzofurans’, and the
synthesis of indoles® in which the arylpalladium intermediate is trapped by an intramolecular
Mizoroki-Heck reaction. Furthermore, substrates labeled with deuterium have also been
prepared and employed in this process to explore the mechanistic details of this

rearrangement.

Results and Discussion
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1. Optimization of Reaction Conditions. In our initial work on this carbazole synthesis,
we treated N-phenyl-3-iodoaniline and 1 equiv of 1-phenyl-1-butyne with 5 mol % Pd(OAc),,
10 mol % PPh;, and 2 equiv of NaOAc in N,N-dimethylformamide (DMF) at 100 °C for 24 h
(Table 1, entry 1). Unfortunately, only a trace of the desired carbazole product 1a was
observed by GC-MS analysis. This reaction was subsequently

Table 1. Optimization of the Carbazole Synthesis

Ph Et
| £t Et._~ Ph.
cat. Pd(0)
sUeENE - Newo Ry~
N Ph N
1a 1b
entry R base ligand additive ggle ;7;;:1;&()1&
1 H 2 NaOAc 10% PPh; - 24 trace
2 H 2 Na,COs3 10% PPh; - 24 0
3 H 2 NEt3 10% PPh; - 24 0
4 H 2 NaOAc 10% PPh; 1 TBAC 24 20 (10:1)
5 H 2 Csbiv 10% PPh; - 12 60° (10:1)
6 H 2 CsPiv 5% dppm - 6 73 (10:1)
7 H 2 CsPiv 5% dppm 1 TBAC 6 71° (10:1)
8 Me 2 CsPiv 5% dppm - 12 trace
9 Ph 2 CsPiv 5% dppm - 12 0

?All reactions were conducted on a 0.25 mmol scale at 100 °C in 4 mL of DMF, and
the ratio of aryl iodide to alkyne was 1:1 (sealed vial, under Ar). The ratio of 1a to
1b, as determined by 'H NMR spectroscopy, is reported in parentheses. "GC yield.

carried out using both an inorganic base Na,COj3 (entry 2) and an organic base NEt; (entry 3),
but none of the desired carbazole product was observed. When 1 equiv of n-BusNCI (TBAC)
was added to the NaOAc reaction, a 20% yield of a 10:1 ratio of isomeric carbazoles 1a and
1b was obtained (entry 4). We next conducted the model reaction in the presence of 2 equiv

of CsO,CCMe; (CsPiv) because of its superior solubility in DMF. To our delight, a 60%
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yield of the desired products was obtained (entry 5). By simply replacing PPhs with a
bidentate ligand bis(diphenylphosphino)methane (dppm), a 73% yield of the two
regioisomers was isolated by flash chromatography (entry 6). We then repeated the same
reaction in the presence of 1 equiv of TBAC, but it appears that the presence of chloride
source is unnecessary for this transformation (entry 7). The lack of a substitutent on the
aniline nitrogen is also crucial, because the corresponding amines with Me and Ph
substitutents produced none of the anticipated carbazoles (entries 8 and 9). In conclusion, the
“optimal” reaction conditions for this nitrogen-directed vinylic to aryl palladium migration
utilizes 5 mol % Pd(OAc),, 5 mol % bis(diphenylphosphino)methane (dppm), and 2 equiv of
CsO,CCMe;s (CsPiv) in DMF at 100 °C.

2. Synthesis of Carbazoles by Nitrogen-directed Vinylic to Aryl Palladium Migration.
We next examined the reaction using various internal alkynes in order to determine the scope
and limitations of this process. The results are shown in Table 2. Theoretically, when 4,4-
dimethyl-2-pentyne was allowed to react with N-phenyl-3-iodoaniline, the previously
reported consecutive vinylic to aryl to allylic palladium migration could also occur, and a nt-
allylpalladium complex I would be generated as shown in Scheme 2. > However, as
determined by GC-MS analysis, only the expected carbazole product was found, and a 44%
yield of one regioisomer 2a was isolated (Table 2, entry 2). When 4-octyne was employed as
the starting material, the reaction was very messy, and only a 35% yield of the carbazole 3
was obtained (entry 3). In this system, the vinylpalladium intermediate generated from
carbopalladation may undergo S-H elimination to afford an allene, which may account for the
low yield of carbazole in this reaction. To avoid loss of the volatile alkyne (the boiling point

of 4,4-dimethylpentyne is only 70 °C) or possible -H elimination, 2,2-dimethyl-3-octyne
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Scheme 2. Other Possible Palladium Migration Reactions
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was prepared and allowed to react with our di.iarylamine. However, only a 48% yield of the
desired product 4a was isolated (entry 4). 1-Phenyl-1-propyne afforded a 65% yield of two
regioisomers Sa and Sb in a 12:1 ratio (entry 5). In the case of diphenyl acetylene, the
arylpalladium intermediate formed by vinylic to aryl Pd migration might be expected to
undergo direct arylation of one of the phenyl groups of the diphenyl acetylene, affording
phenylamino-substituted benzylidenefluorenes II or III (Scheme 2).” Surprisingly, a 69%
yield of a single isomer 6 was isolated from this reaction (entry 6), and no
benzylidenefluorene products were observed. We have also examined the reaction of this
aniline with a couple of other aryl acetylenes bearing diverse functionalities on the arene.
When 1-(4-nitrophenyl)-1-butyne was employed in our carbazole synthesis, a very messy
reaction was observed and none of the desired product was evident by GC-MS analysis (entry
7). However, when a moderate electron-withdrawing ester group (CO,Et) was present on the

phenyl ring of the alkyne, a 71% yield of a single regioisomer 7a was isolated by flash

chromatography (entry 8). Presumably, the improved regioselectivity is due to the fact that
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Table 2. Synthesis of Substituted Carbazoles®

entry aryl iodide alkyne product(s) Z;i;gild
Ph Et
I Et. ~ Ph._~
+
: @ O Ei—=—p I L e
1a 1b
t-Bu
Me. _~
2 Me—=—1-Bu O O 44
H 2a
n-Pr
n-Pr =
3 n-Pr—=——n-Pr O O 35°¢
N T3
+Bu
n-Bu._~
4 nBu————1Bu O O 48
N 4a
Ph Me
Me. -~ Ph. —
5 Me—==—Ph O O "7 65 (12:1)
N
H
Sa 5b
Ph
Ph. =
6 —
N 6
7 ET%ONOZ - O
CsH4COgEt-p
Et._~
8 Et%@COZEt O O 71
N
H 7a
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Table 2. (Continued)

iel
entry aryl iodide alkyne product(s) (7(03}-,[1)6)"(1
CgH4OMe-0 Et
Et.~ 0-MeOCgHy._~
? o Q O O * 68 (10:1)
MeO N
H
8a 8b
10 MeO,C—=——Ph - 0
Ph
' Ph._~
Me
11 /©/ Ph—=——Ph Me 61
; L
H 9
Ph
I Ph._~
OMe
12 ©\ /O/ Ph—=—ph OMe 75
5 (LI
H 10
Ph
Et
| Etu~ oh.
13 @ Et—=—Ph O O L AN T7(10:0)
N/© t N mfﬁﬂ
Ho Ome Ho Ove
11a 11b
Ph
! Ph._~
CO,Me
14 ©\ /©/ Ph—==—Ph COzMe 71
; QLI
H 12
Ph
Et
| Et.~ Phe
ol o
15 /©/ Et—==—Ph O O + 7 65 (10:1)
13a 13b
Ph £
| O Ete_~ Phgi
e = O O * 64 (10:1
©\ Btm——Pn N O M“"rg ( )
N H
14a 14b
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Table 2. (Continued)

% yield

entry aryl iodide alkyne product(s) (a:b)’

| Ph_~

17 @\% Ph—=—FPh O O 68
N
H

“All reactions were conducted on a 0.25 mmol scale at 100 °C, using 5 mol % Pd(OAc),,
5 mol % bis(diphenylphosphino)methane (dppm), and 2 equiv of CsO,CCMe; (CsPiv) in
DMF (4 mL), and the ratio of aryl iodide to alkyne was 1:1 (sealed vial, under Ar). "The
ratio of a to b, as determined by 'H NMR spectroscopy, is reported in parentheses. “The
isolated products contain impurities, which cannot be separated by flash chromatography,
thus the yield has been determined by GC analysis.

the electron-withdrawing group tends to stabilize the vinylpalladium intermediate generated,’
and thus enhances the regioselectivity of carbopalladation. We can only surmise that the
presence of the NO, group stabilizes the resulting vinylpalladium intermediate so much that
it no longer undergoes palladium migration and side reactions ensue, consuming all starting
materials. An analogous alkyne bearing an ortho-methoxy group on the arene afforded a
68% yield of the anticipated 10:1 mixture of carbazoles 8a and 8b, respectively (entry 9).
When methyl phenylpropynoate was employed in this process, after a 24 h reaction, none of
the desired carbazole product was evident (entry 10).

We have also examined the reaction of a number of anilines bearing functionality on the
aromatic ring undergoing substitution by the arylpalladium intermediate generated by the
vinylic to aryl palladium migration (see the later mechanistic discussion). The reaction of N-
(4-methylphenyl)-3-iodoaniline and diphenyl acetylene afforded a 61% yield of carbazole 9
(entry 11). A more electron-rich substrate bearing a methoxy group afforded a 75% yield of a
single carbazole product 10 (entry 12). The reaction of N-(2-methoxyphenyl)-3-iodoaniline

and 1-phenyl-1-butyne was also studied (entry 13). Statistically, the methoxy group ortho to
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the nitrogen would be expected to reduce the opportunities for intramolecular arylation, plus,
the favored molecular configuration for the arylpalladium intermediate is expected to be one
in which the aromatic ring is perpendicular to the other aromatic ring, which should disfavor
intramolecular arylation. However, a 77% yield of a 10:1 mixture of regioisomeric
carbazoles was obtained, probably because the oxygen atom of the methoxy group
coordinates to the palladium moiety and perhaps stabilizes the arylpalladium intermediate
generated. Substrates bearing either an electron-withdrawing 4-methoxycarbonyl or 4-chloro
group also afforded a 71% yield of carbazole 12 and a 65% yield of two isomeric carbazoles
13a and 13b in a 10:1 ratio, respectively (entries 14 and 15). We have also examined the
regioselectivity of ring closure by employing N-(3-iodophenyl)naphthalen-1-amine (entry
16). Here, cyclization might occur at either the 2 position or the 8 position of the naphthalene
ring. However, the only products observed are those formed by ring closure at the 2 position
of the naphthalene by the presumed intermediacy of a 6-membered ring palladacycle, as
opposed to the analogous 7-membered ring palladacycle required to generate the product of
attack at the 8 position of the naphthalene. A tetrahydronaphthylamine compound was also
prepared and allowed to react with diphenyl acetylene, and a 68% yield of carbazole 15 was
isolated by flash chromatography (entry 17).

3. Synthesis of Substituted Indoles by Vinylic to Aryl Palladium Migration Followed
by Intramolecular Mizoroki-Heck Reaction. The arylpalladium intermediates generated
by aryl to aryl palladium migration have been shown to undergo an intermolecular Mizoroki-
Heck reaction and a Suzuki-Miyaura reaction,'® and the arylpalladium species generated from
alkyl to aryl palladium migration have also been shown to be easily trapped by an

intermolecular Mizoroki-Heck reaction.* An arylpalladium species generated from vinylic to
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aryl palladium migration has also been trapped by a Stille coupling reaction.” Since the
intramolecular Mizoroki-Heck reaction is a very powerful method for C-C bond formation in
organic synthesis, and a plethora of natural products and biologically interesting compounds
have been synthesized employing this methodology,'' we were encouraged by our carbazole
synthesis to

Scheme 3. Synthesis of Substituted Indoles

|
Me
= cat. Pd(0)
+ R——R  — |
N
"

N
H
R R R R
R PdX R A R xpd  RF
ST -
N N N N
L v H V H H N

examine possible intramolecuar Heck reactions as a trap for the arylpalladium intermediate
generated. As shown in Scheme 3, after carbopalladation, vinylpalladium intermediate IV is
generated. Once the palladium moiety undergoes nitrogen-directed vinylic to aryl migration
to afford arylpalladium species V, an intramolecular Heck reaction, followed by
aromatization, should generate indole derivatives. N-Allyl-3-iodoaniline and 1 equiv of 1-
phenyl-1-butyne were allowed to react with 5 mol % Pd(OAc),, 5 mol % dppm, and 2 equiv
of CsO,CCMe; in 4 mL DMF at 100 °C. After 3 h, the aryl iodide was completely consumed
and a 45% yield of two isomeric indoles 16a and 16b was obtained in a 10:1 ratio (Table 3,

entry 1). Two equiv of N-allyl-3-iodoaniline was allowed to react with this alkyne.
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Table 3. Synthesis of Substituted Indoles”

entry aryl iodide alkyne product % yield (a:b)"

' Et—==—Ph
1 f
N
H

45 (10:1)

31

Ph
Etw_~
Me
| +
N
H
16a
Ph
Ph._~
Me
I
N
H 1
Ph
Me. =
Me
3 Me—==—Pph |
N
H
18a
Ph
| 0
Ph._~ o
4 Ph—=—=—Ph
g .
H 19

“These reactions were conducted on a 0.25 mmol scale at 100 °C for 3 h, using 5 mol
% Pd(OAc);, 5 mol % bis(diphenylphosphino)methane (dppm), and 2 equiv of
CsO,CCMe;s (CsPiv) in DMF (4 mL), and the ratio of aryl iodide to alkyne was 1:1
(sealed vial, under Ar). “The ratio of a to b, as determined by 'H NMR spectroscopy,
is reported in parentheses. “The reaction was conducted at 125 °C, using 10 mol %
Pd(OAc);, 10 mol % bis(diphenylphosphino)methane (dppm), and 2 equiv of
CsO,CCMej; (CsPiv) in DMF (2 mL) for 24 h.

e

P
ﬁﬁ
7

P

Et
ho~
=

16b

M
ho~
ﬁ 26 (15:1)
18b

40°

However, a lower yield was obtained. We have been very reluctant to dramatically change
the reaction conditions, because the palladium migration chemistry is generally very sensitive
to variations in the reaction conditions, especially the base. However, we did try a few things
to optimize the reaction conditions in order to achieve higher yields. The reaction was
conducted at both 80 °C and 125 °C, in more concentrated or diluted solutions, in the

presence of TBAC or Ag,COs, and using electron-rich ligands, like P(#-Bu);. Unfortunately,
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none of our efforts were fruitful. A set of other alkynes and imine starting materials have
been screened, and only moderate yields (26-40%) have been obtained (entries 2-4). The
major problem in this process is probably the fact that the arylpalladium intermediate
generated by oxidative addition, the vinylpalladium intermediate IV, and the arylpalladium
intermediate V can all react with N-allyl-3-iodoaniline. Although the desired process is an
intramolecular reaction, which should have some advantage over those intermolecular
processes, at this time we are unable to get higher yields. An additional complication is that
the vinylic to aryl palladium migration is presumably the slow step in this domino process,

which leaves plenty of time for side reactions.

4. Synthesis of Substituted Dibenzofurans. After having investigated the nitrogen-
directed vinylic to aryl palladium migration, we wondered if we could expand this protocol to
the synthesis of substituted dibenzofurans, although Pd-O coordination would be expected to
be much weaker than Pd-N coordination. 3-Iodophenyl phenyl ether and 1-phenyl-1-butyne
were treated with 5 mol % Pd(OAc),, 5 mol % dppm, and 2 equiv of CsO,CCMe; in DMF at
100 °C, but the reaction was very messy, and only a 30% yield of an 8:1 mixture of two
isomeric dibenzofurans 20a and 20b was observed by GC-MS analysis (Table 4, entry 1).
Previous aryl to aryl palladium migration studies in our group have indicated that palladium
tends to reside on the more electron-rich aromatic ring. Thus, we felt that an increase in
electron density in the arene undergoing vinylic to aryl palladium migration should facilitate
this through-space migration. Indeed, the reaction of 1-iodo-3,5-diphenoxybenzene with 1-
phenyl-1-butyne afforded a 75% yield of a 9:1 mixture of two regioisomeric dibenzofurans
21a and 21b (entry 2). The increased reaction efficiency could be a result of the increased

electron density of the arene favoring Pd migration. However, this process may also be more
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Table 4. Synthesis of Substituted Dibenzofurans®

entry aryl iodide alkyne product(s) ZV;}l;l)ebld
Ph Et
Et.._~ Ph. —
|
o0 = O w
O (0)
20a 20b
Ph Et
Et. ~ Ph._~
: J@ D L e
Et——=——Ph .
PhO o/© PhO o ﬂ
21a 21b
Ph Et
Et._~ Ph. _~
|
3 Q@ Et—=——Ph T e 0
MeO O MeO O
22a 22b
Ph Me
Me -~ Ph._~
4 T o
Me——=——>PFPh :
) MeO (o) ﬁfﬁ
23a 23b
+-Bu
Me._~
5 Me————1-Bu ‘ O 42
MeO 6] 24a
n-Pr
n-Prw_~
6 44

n-Pr———n-Pr
MeO l O IZS
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Table 4. (Continued)

entry aryl iodide alkyne product(s) % yield (a:b)°

76

Ph

Ph._~

7 Ph—=—=—Ph g
MeO o)

6H4002Et 19)

Et.~ p-EtO-CCgHy
JE— / .
g EtT@cozEt - O ] O 60 (15:1)

27a 27b

Et—— ; >
9 O = 37 (7:1)

MeO

26

“All reactions were conducted on a 0.25 mmol scale at 100 °C for 12 h, using 5 mol %
Pd(OAc),, 5 mol % bis(diphenylphosphino)methane (dppm), and 2 equiv of
CsO,CCMe;s (CsPiv) in DMF (4 mL), and the ratio of aryl iodide to alkyne was 1:1
(sealed vial, under Ar). “The ratio of a to b, as determined by "H NMR spectroscopy, is
reported in parentheses.

efficient, because migration to either of the two ortho positions of the arene is now possible,
doubling the probability of intramolecular arylation. To further examine the effect of an
electron-rich substituent, 3-iodo-5-phenoxyanisole was prepared and allowed to react with 1-
phenyl-1-butyne. A 78% yield of two isomeric dibenzofurans 22a and 22b was obtained
(entry 3), which clearly suggests that an increase in the electron-density of the arene is the
major reason for the improved reaction efficiency. Several other internal alkynes have been
allowed to react with this iodoarene, and moderate to excellent yields have generally been
obtained. 1-Phenyl-1-propyne afforded a 78% yield of two regioisomers 23a and 23b in a

9:1 ratio (entry 4). 4,4-Dimethyl-2-pentyne afforded a 42% yield of a single regioisomer 24,
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as expected (entry 5). 4-Octyne afforded a 44% yield of dibenzofuran 25 (entry 6). When
employing diphenyl acetylene, a 76% yield of a single isomer 26 was obtained (entry 7).
When methyl 4-(but-1-ynyl)benzoate was employed in this reaction, a 60% yield of two
isomeric dibenzofurans 27a and 27b was obtained in a 15:1 ratio (entry 8). An analogous
alkyne bearing an ortho-methoxy group afforded a 37% yield of a 7:1 mixture of
dibenzofuran products 28a and 28b (entry 9).

To further extend this protocol to the synthesis of other heteroatom-containing rings, we
also prepared several heteroatom-containing aryl iodides as shown in Chart 1. The reactions
of aryl iodides 29 and 30 with 1-phenyl-1-butyne were very messy and the anticipated
dihydrophenanthridines were not evident by GC-MS. An electron-poor aryl iodide 31 was
also allowed to react with 1-phenyl-1-butyne. However, the reaction was sluggish, and, after
24 h, none of the desired fluoren-9-one product was generated. In the case of the moderately
electron-rich ring system 32, none of the expected palladium migration product was
observed.

Chart 1. Other Heteroatom-containing Aryl lodides

G0 QP o0 Qg

29 30 31 32
5. Mechanism. A plausible mechanism for this palladium rearrangement is proposed in
Scheme 4. Intermediate A is first generated by oxidative addition of the aryl iodide to Pd(0).
Subsequent intermolecular carbopalladation would be expected to afford intermediate B. The

resulting vinylic palladium intermediate B might then undergo palladium migration from the
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vinylic position to an aryl position to generate intermediate F, possibly through an
organopalladium(IV) hydride C (route a), although such Pd(IV)hydride intermediates have
not previously been reported.12 An equilibrium between organopalladium(IV) hydride C and
organopalladium(Il) intermediate D is also possible, although palladacycle D could also be
generated directly from intermediate B. Intermediate F eventually undergoes either
palladium insertion into the C-H bond of the neighboring arene or electrophilic aromatic
substitution to afford the six-membered ring palladacycle G. Alternatively, intermediate D
can undergo intramolecular C-H activation to generate an interesting organopalladium(IV)

Scheme 4. Proposed Mechanism
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hydride E; subsequent reductive elimination could also generate intermediate G (route b).

A

When R is a phenyl group, the palladium moiety can migrate to either of two ortho positions
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of the arene originally bearing the iodo group and then be trapped by arylation to generate
either the observed carbazole (dibenzofuran) or a fluorene. While we have previously
reported such a fluorene synthesis,” only the carbazole (dibenzofuran) products are observed,
which suggests that the palladium only migrates to the position ortho to the heteroatom. This
interesting selectivity may be due to coordination between the ortho heteroatom and the
palladium moiety, which is not available if the palladium migrates to the position para to the
heteroatom. Alternatively, the palladium may prefer the position ortho to the heteroatom due
to stabilization of the arylpalladium intermediate by inductive electron withdrawal, as
suggested by recent results in our laboratories, which are supported by calculations.

6. Deuterium Labeling Experiments. In order to clarify the ambiguities in the
mechanism, we prepared the deuterium labeled starting material 33-d (90% deuterium
incorporation in each position of the arene, as shown in Scheme 5)" and allowed this
compound to react with diphenyl acetylene under our usual palladium migration conditions.

According to the proposed mechanism shown in Scheme 6, if the reaction

Scheme 5. Synthesis of Deuterated Compound 33-d
D

MeO OPh
D D
| 33-d

(i) NaSMe, DMA, 140 °C (ii) (a) NaNO,, HCI (b) KiI; (iii) CF3CO,D,
reflux; (iv) 4 CsF,1.1 2-(trimethylsilyl)phenyl trifluoromethanesulfonate, MeCN.

only proceeds through route a, the deuterium originally ortho to the oxygen atom and the

iodine atom will shift to the vinylic position after the vinylic to aryl palladium migration.
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Thus, we should obtain dibenzofuran 34-d. On the other hand, if this reaction only goes
through the mechanism described in route b, product 34-h should be obtained. Indeed, an
80% yield of dibenzofuran 34-d was isolated by flash chromatography, with 70% deuterium
incorporation in the vinylic position (determined by '"H NMR spectroscopy). This result
clearly suggests the involvement of route a. The loss of deuterium could be due to H-D
exchange through an equilibrium between palladacycle K and palladacycle P or the direct H-

Scheme 6. Deuterium Labeling Experiment
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D exchange between intermediate K and an H source in the reaction solution. Alternatively,
it could be due to the involvement of route b, because the aryl deuterium presumably would
be washed out upon formation of intermediate P. To address these issues, we conducted the
same reaction in the presence of 10 equiv of D,O, and 85% deuterium incorporation was
observed in the vinylic position of the isolated dibenzofuran product 34-d, which suggests
that the previous deuterium loss is probably the result of H-D exchange in intermediate K,

instead of the alternative mechanistic route b.

Conclusions

In conclusion, we have established the scope and limitations of a mechanistically important
palladium migration process, which affords an efficient way to prepare biologically
interesting carbazoles, indoles and dibenzofurans. The advantage of this chemistry is that an
alkenyl substituent can be efficiently incorporated into the heterocyclic ring during the course
of the cyclization, which can be still further modified to other functional groups. This
reaction is quite general for the synthesis of carbazoles, but only moderate yields can be
obtained in the synthesis of indoles, and excellent yields can be achieved in the synthesis of
dibenzofurans only if electron-rich aryl iodides are employed. The relatively modest
regiochemistry of alkyne insertion also presents problems. The results of deuterium labeling
experiments showed a high degree of deuterium incorporation in the vinylic position of the
dibenzofuran product obtained, affording convincing evidence for the proposed palladium
migration mechanism. The H-D exchange also suggests that the migration process involves
an equilibrium between Pd(I) and Pd(IV) intermediates, which is consistent with a
previously reported consecutive vinylic to aryl to allylic palladium migration’ and does not

favor the direct Pd-H shift mechanism reported elsewhere.
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Experimental Section
I. General Procedures.

All 'H and *C NMR spectra were collected in CDCl; unless noted otherwise. Thin layer
chromatography was performed using 60-mesh silica gel plates, and visualization was
affected using short wavelength UV light (254 nm) and a basic KMnO;, solution. All high
resolution mass spectra were recorded using EIL

All reagents were used directly as obtained commercially unless otherwise noted.
Anhydrous forms of acetonitrile, DMF, diethyl ether, ethyl acetate, hexanes, and 4.4-
dimethyl-2-pentyne were purchased from Lancaster Synthesis, Inc. 3-lIodoaniline, 2-
(trimethylsilyl)phenyl trifluoromethanesulfonate, cesium fluoride, 1,3-diiodobenzene, 1,1'-
bis(diphenylphosphino)ferrocene (dppf), sodium tert-butoxide, p-toluidine, p-anisidine, p-
chloroaniline, o-methoxyaniline, methyl 4-aminobenzoate, 1-naphthylamine, 5,6,7,8-
tetrahydronaphthalen-1-ylamine, 1-phenyl-1-butyne, 1-phenyl-1-propyne, 4-octyne, diphenyl
acetylene, 3,5-dimethoxyaniline, sodium thiomethoxide, and trifluoroacetic acid-d were
purchased from Aldrich Chemical Co., Inc. Cesium pivalate was prepared according to the
procedure of Campo and Larock.'*  The substituted alkynes were prepared by the
Sonogashira coupling of aryl iodides with 1-butyne using 5 mol % of PdCl,(PPhs),, 2 mol %
of Cul in Et;N solvent at room temperature.15
II. Noncommercial compounds.

N-Phenyl-3-iodoaniline.
This compound was prepared according to the reported procedure.'® "H NMR (CDCl3) &

5.67 (s, 1H), 6.94-7.10 (m, 5H), 7.23-7.41 (m, 4H); °C NMR (CDCl3) 95.2, 116.5, 119.1,
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122.3, 125.9, 129.7, 129.8, 131.1, 142.2, 145.1; IR (CDCls) 3427, 3061, 3034, 1584 cm™;
HRMS m/z 294.9858 (calcd for C;,H;oNI, 294.9863).

Other aniline starting materials were prepared through a palladium-catalyzed amination
reaction.'’” The typical yield is ~30%.
N-p-Tolyl-3-iodoaniline.

'H NMR (CDCl3) § 2.34 (s, 3H), 5.58 (s, 1H), 6.93-7.26 (m, 7H), 7.34 (s, 1H); °C NMR
(CDCls) 21.1, 95.3, 115.7, 120.2, 124.9, 129.0, 130.3, 131.0, 132.3, 139.3, 145.9; IR (CDCls)
3427, 3028, 2922, 1587 cm'l; HRMS m/z 309.0018 (calcd for Ci3HoIN, 309.0015).
N-(2-Methoxyphenyl)-3-iodoaniline.

'H NMR (CDCl3) & 3.89 (s, 3H), 6.15 (s, 1H), 6.92-7.01 (m, 4H), 7.09-7.12 (m, 1H), 7.26-
7.35 (m, 2 H), 7.51 (t, J = 1.7 Hz, 1H); >*C NMR (CDCl3) 55.9, 95.2, 111.0, 116.2, 117.2,
121.1, 121.3, 126.5, 129.9, 131.0, 131.9, 144.7, 149.0; IR (CDCl;) 3418, 3060, 2962, 1244
cm™'; HRMS m/z 324.9969 (caled for C13HgINO, 324.9964).
N-(4-Methoxyphenyl)-3-iodoaniline.

'H NMR (CDCls) § 3.83 (s, 3H), 5.51 (s, 1H), 6.82-7.23 (m, 8H); '°C NMR (CDCl3) 55.9,
95.5, 114.7, 115.1, 123.5, 123.9, 128.3, 131.1, 134.7, 147.1, 156.1; IR (CDCl3) 3425, 3006,
2957, 1245 cm™'; HRMS m/z 324.9967 (calcd for C3HoINO, 324.9964).

Methyl N-(3-iodophenylamino)benzoate.

'H NMR (CDCl3) & 3.88 (s, 3H), 6.10 (s, 1H), 6.98-7.13 (m, 4H), 7.35 (d, J = 7.8 Hz, 1H),
7.50 (s, 1H), 7.92 (d, J = 8.7 Hz, 1H); >C NMR (CDCl3) 52.1, 95.0, 115.6, 119.1, 122.2,
128.6, 131.1, 131.8, 131.9, 142.7, 147.3, 167.1; IR (CDCls) 3340, 2945, 1694, 1580 cm™;
HRMS m/z 352.9913 (calcd for C4H2INO,, 352.9918).

N-(4-Chlorophenyl)-3-iodoaniline.
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'H NMR (CDCl3) § 5.64 (s, 1H), 6.96-7.00 (m, 4H), 7.23-7.28 (m, 3H), 7.36 (s, 1H); °C
NMR (CDCl3) 95.3, 116.8, 120.1, 126.1, 126.8, 129.7, 130.2, 131.2, 140.9, 144.6; IR
(CDCl3) 3427, 3061, 3034, 1583 cm’'; HRMS m/z 328.9473 (caled for C;,HsCIIN,
328.9468).

N-(3-Iodophenyl)naphthalen-1-amine.

'H NMR (CDCl3) § 5.83 (s, 1H), 6.85-6.97 (m, 2H), 7.21 (dt, J = 7.6, 1.3 Hz, 1H), 7.30 (t, J
= 1.9 Hz, 1H), 7.37-7.56 (m, 4H), 7.65 (d, J = 7.8 Hz, 1H), 7.88-8.00 (m, 2H); *C NMR
(CDCl3) 95.2, 115.9, 118.2, 122.1, 124.5, 125.3, 126.2, 126.6, 128.6, 128.8, 129.1, 131.0,
134.9, 137.7, 146.9; IR (CDCl3) 3415, 3060, 1574 cm™'; HRMS m/z 345.0018 (calcd for
CigHi2IN, 345.0015).

N-(3-Iodophenyl)-5,6,7,8-tetrahydronaphthalen-1-amine.

'H NMR (CDCl3) & 1.79-1.90 (m, 4H), 2.60 (t, J = 6.1 Hz, 2H), 2.84 (t, J = 6.1 Hz, 2H),
5.31 (s, 1H), 6.87-6.90 (m, 2H), 6.96 (t, J/ = 7.7 Hz, 1H), 7.11 (d, J = 4.3 Hz, 2H), 7.20-7.22
(dd, J = 7.6, 0.9 Hz, 1H), 7.30 (s, 1H); °C NMR (CDCl3) 23.0, 23.3, 25.0, 30.2, 95.3, 116.1,
117.6, 124.4, 125.5, 126.1, 128.9, 129.0, 131.0, 139.1, 140.0, 146.1; IR (CDCls) 3396, 3054,
2927, 1578 cm™; HRMS m/z 349.0331 (calcd for CsH;6IN, 349.0328).
N-Allyl-3-iodoaniline.

This compound was prepared according to the reported procedure.'® 'H NMR (CDCl3) &
3.74 (d, J = 5.1 Hz, 2H), 3.81 (s, 1H), 5.19-5.33 (m, 2H), 5.87-5.99 (m, 1H), 6.57 (dd, J =
8.1, 2.4 Hz, 1H), 6.89 (t, J = 8.1 Hz, 1H), 6.97 (t, J = 1.6 Hz, 1H), 7.05 (d, J = 7.8 Hz, 1H);
C NMR (CDCl3) 46.5, 95.6, 112.5, 116.9, 121.7, 126.6, 130.9, 135.0, 149.5; IR (CDCls)
3417, 3076, 2847, 1590 cm™'; HRMS m/z 258.9862 (calcd for CoH oNI, 258.9858).

3-(3-Iodophenylamino)cyclohex-2-enone.
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3-lodoaniline (2 mmol) and cyclohexane-1,3-dione (2 mmol) were dissolved in 10 mL of
toluene and then the mixture was heated at 100 °C in the presence of 8 mmol of anhydrous
MgSO;4 and a catalytic amount of TsOH. After 12 h, the reaction mixture was filtered, and
the toluene was removed from the filtrate. The residue obtained was purified by flash
chromatography to afford a 90% yield of the imine product: '"H NMR (CDCl3) & 1.96-2.02
(m, 2H), 2.32 (t, J = 6.2 Hz, 2H), 2.50 (t, J = 6.2 Hz, 2H), 5.51 (s, 1H), 7.00 (t, J = 8.0 Hz,
1H), 7.10 (dd, J = 8.0, 0.9 Hz, 1H), 7.40-7.48 (m, 3H); °C NMR (CDCls) 22.0, 29.8, 36.7,
123.3, 130.9, 132.8, 134.6, 139.8, 162.8, 198.9; IR (CDCls) 3247, 3056, 2945, 1566 cm’;
HRMS m/z 312.9968 (calcd for C1,H2INO, 312.9964).
1-Iodo-3-(phenoxy)benzene.

This compound was prepared by the reported procedure.'” "H NMR (CDCls) & 6.96-7.07
(m, 4H), 7.16 (t, J = 7.4 Hz, 1H), 7.35-7.44 (m, 4H); °C NMR (CDCl3) 94.5, 118.2, 119.5,
124.2, 127.8, 130.2, 131.3, 132.4, 156.6, 158.3; IR (CDCl3) 3075, 2965, 1582 cm™'; HRMS
m/z 295.9702 (calcd for C;,HolO, 295.9698).

Iodo-3,5-diphenoxybenzene.

This compound was prepared by the sequence shown below:

Me0\©/OMe HO\©/OH HO\Q/OH Ph0\©/OPh
i i ii
NH, | ' |

(i) (a) NaNOo, HCI (b) KiI; (ii) BBrs; (iii) 6 CsF, 2.2 2-(trimethylsilyl)phenyl trifluoromethanesulfonate,
MeCN.

'H NMR (CDCl3) § 6.63 (t, J = 2.2 Hz, 1H), 7.02-7.04 (m, 6H), 7.13-7.17 (m, 2H), 7.35-7.39
(m, 4H); ”C NMR (CDCl3) 94.1, 108.7, 119.8, 122.0, 124.5, 130.2, 156.1, 159.4; IR

(CDCl3) 3073, 3039, 1575 cm™'; HRMS m/z 387.9964 (calcd for CgH 310,, 387.9960).
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1-Iodo-3-methoxy-5-(phenoxy)benzene.

This compound was prepared by the sequence shown below.”> 'H NMR (CDCls) & 3.76 (s,
3H), 6.57 (t, J = 2.2 Hz, 1H), 6.97 (t, J = 1.5 Hz, 1H), 7.03-7.09 (m, 3H), 7.18 (t, J = 7.3 Hz,
1H), 7.36-7.42 (m, 2H); °C NMR (CDCl3) 55.9, 94.4, 104.9, 118.3, 119.8, 120.2, 124.3,
130.2, 156.4, 159.3, 161.5; IR (CDCls) 3074, 2960, 1586 cm™; HRMS m/z 325.9808 (calcd

for C13H;110,, 325.9804).

Me0\©/OMe Me0\©/OH Meo\©/0H Me0\©/OPh
i i ii
NH, NH, ' |

(i) NaSMe, DMA, 140 °C; (i) (a) NaNOo, HCI; (b) KiI; (iii) 4 CsF, 1.1 2-(trimethylsilyl)phenyl
trifluoromethanesulfonate, MeCN.

Compound 29-d: 'H NMR (CDCls) & 3.76 (s, 3H), 6.52 (s, 0.08H), 6.92 (s, 0.11H), 6.99-7.04
(m, 2H), 7.15 (t, J = 7.32 Hz, 1H), 7.34-7.39 (m, 2H).
II1. Experimental Procedures.

The aryl halide (0.25 mmol), alkyne (0.25 mmol), Pd(OAc), (2.8 mg, 0.0125 mmol),
bis(diphenylphosphino)methane (dppm) (4.8 mg, 0.0125 mmol) and CsO,CCMes (CsPiv)
(0.117 g, 0.5 mmol) in 4 mL of DMF were stirred under Ar at 100 °C for 6 h. The reaction
mixture was allowed to cool to room temperature, diluted with diethyl ether (25 mL) and
washed with 5% Na,COs (25 mL). The aqueous layer was re-extracted with diethyl ether (25
mL) twice. The organic layers were combined, dried (MgSQ,), filtered, and the solvent was
removed under reduced pressure. The residue was purified by flash chromatography on silica
gel.

For the products reported in entries 1, 5, 9, 13, 15 and 16 of Table 2; entry 1 in Table 3;

and entries 2-4, 8, and 9 in Table 3, GC-mass spectral analysis shows two regioisomers,
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which cannot be separated by flash chromatography. The ratio of these isomers was
determined by 'H NMR spectroscopy.

(E)-4-(1-Phenylbut-1-enyl)-9H-carbazole (1a).

'H NMR (CDCl3) & 1.11 (t, J = 7.4 Hz, 3H), 2.94 (q, J = 7.4 Hz, 2H), 6.74 (s, 1H), 7.11-
7.20 (m, 2H), 7.35-7.53 (m, 9H), 8.05 (s, 1H), 8.20 (d, J = 7.9 Hz, 1H); °C NMR (CDCls)
13.4,25.9,109.4, 110.7, 119.6, 120.2, 120.9, 123.0, 123.3, 125.7, 125.8, 126.9, 128.7, 128.9,
129.0, 138.2, 139.9, 139.9, 140.1, 144.6; IR (CDCls) 3471, 3056, 2968, 2934, 1599 cm;
HRMS m/z 297.1522 (calcd for C2,H 9N, 297.1518).
(E)-4-(4,4-Dimethylpent-2-en-2-yl)-9H-carbazole (2).

'H NMR (CDCls) & 1.34 (s, 9H), 2.28 (d, J = 1.3 Hz, 3H), 5.67 (d, J = 1.4 Hz, 1H), 6.96
(dd, J = 6.9, 1.2 Hz, 1H), 7.19-7.42 (m, 5H), 8.06 (s, 1H), 8.14 (d, J = 7.8 Hz, 1H); °C NMR
(CDCl3) 19.2, 31.2, 33.1, 108.8, 110.6, 119.4, 119.7, 120.2, 123.0, 123.2, 125.6, 125.9,
134.8, 139.6, 139.8, 139.9, 143.3; IR (CDCl3) 3473, 2960, 2867, 1600 cm™; HRMS m/z
263.1679 (calcd for C19Hz N, 263.1674).
4-[1-(2,2-Dimethylpropylidene)pentyl]-9H-carbazole (4a).

'H NMR (CDCls) 6 0.81 (t, J = 7.2 Hz, 3H), 1.22-1.40 (m, 13H), 2.71-2.78 (m, 2H), 5.62 (s,
1H), 6.97 (dd, J =7.1, 1.1 Hz, 1H), 7.19-7.42 (m, 5H), 8.01 (s, 1H), 8.20 (d, J = 8.1 Hz, 1H);
BC NMR (CDCl3) 14.2, 23.4,31.4,31.7,32.4, 33.2, 108.7, 110.6, 119.3, 120.5, 120.7, 123.2,
123.4, 125.5, 139.3, 139.8, 139.9, 140.1, 141.9; IR (CDCl3) 3410, 2957, 2866, 1599 cm;
HRMS m/z 305.2148 (calcd for C,Hy;N, 305.2144).
(E)-4-(1-Phenylprop-1-enyl)-9H-carbazole (5a).

'H NMR (CDCls) & 2.47 (s, 3H), 6.78 (s, 1H), 7.12-7.20 (m, 2H), 7.33-7.54 (m, 9H), 8.10

(s, 1H), 8.14 (d, J = 7.8 Hz, 1H); °’C NMR (CDCl3) 19.9, 109.4, 110.7, 119.4, 119.6, 120.2,
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122.9, 123.1, 125.8, 125.9, 126.8, 128.6, 129.3, 129.4, 138.3 (2C), 139.9, 140.1, 141.4; IR
(CDCl3) 3471, 3060, 3026, 1601, 1456 cm™; HRMS m/z 283.1367 (caled for C;sH 9N,
283.1361).

(E)-4-(1,2-Diphenylvinyl)-9H-carbazole (6).

'H NMR (CDCl3) § 7.03-7.14 (m, 3H), 7.23-7.42 (m, 14H), 8.03 (s, 1H), 8.37 (d, J = 8.1
Hz, 1H); °C NMR (CDCls) 109.8, 110.8, 119.6, 121.3, 121.7, 123.0, 123.39, 125.7, 125.9,
127.3, 127.7, 128.5, 128.7, 129.8, 130.2, 131.1, 137.6, 140.0, 140.3, 140.4, 140.7, 141.3; IR
(CDCl3) 3414, 3054, 1599, 1455 cm™'; HRMS m/z 345.1522 (caled for CosH 0N, 345.1518).
(E)-Ethyl 4-[1-(9H-carbazol-4-yl)but-1-enyl]benzoate (7a).

'H NMR (CDCl3) & 1.90 (t, J = 7.5 Hz, 3H), 1.44 (t, J = 7.2 Hz, 3H), 1.91 (g, J = 7.5 Hz,
2H), 4.43 (q, J = 7.2 Hz, 2H), 6.73 (s, 1H), 7.10 (dd, J = 6.7, 1.7 Hz, 1H), 7.15 (td, J = 6.8,
1.5 Hz, 1H), 7.37-7.46 (m, 4H), 7.53 (d, J = 8.1 Hz, 2H), 8.10-8.20 (m, 4H); >C NMR
(CDCl) 13.3, 14.6, 26.0, 6.19, 109.6, 110. 8, 119.6, 119.9, 120.8, 122.8, 123.1, 125.6, 125.8,
128.2, 128.8, 128.9, 130.0, 139.4, 139.9, 140.1, 142.8, 146.7, 166.8; IR (CDCl3) 3472, 2968,
2873, 1710 cm™; HRMS m/z 369.1736 (calcd for CosHp3NO,, 369.1729).
(E)-4-[1-(2-Methoxyphenyl)but-1-enyl]-9H-carbazole (8a).

'H NMR (CDCl3) 8 1.00 (t, J = 7.5 Hz, 3H), 2.80 (q, J = 7.5 Hz, 2H), 3.84 (s, 3H), 6.77 (s,
1H), 6.95 (d, J = 8.0 Hz, 1H), 6.97-7.17 (m, 3H), 7.29-7.53 (m, 6H), 8.11 (s, 1H), 8.36 (d, J =
7.8 Hz, 1H); °C NMR (CDCl3) 13.3, 26.1, 55.5, 109.1, 110.5, 110.8, 118.3, 119.3, 120.2,
120.4, 121.2, 123.5, 124.7, 125.5, 125.6, 127.3, 128.3, 130.1, 139.9, 140.1, 144.0, 157.8; IR
(CDCl3) 3472, 2966, 2934, 1245 cm™; HRMS m/z 327.1628 (caled for C,3H,NO,
327.1623).

(E)-5-(1,2-Diphenylvinyl)-3-methyl-9H-carbazole (9).
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'H NMR (CDCl3) & 2.36 (s, 3H), 7.02-7.05 (m, 2H), 7.20-7.40 (m, 14H), 7.95 (s, 1H), 8.10
(s, 1H); *C NMR (CDCl3) 21.8, 109.8, 110.4, 121.3, 121.6, 123.1, 123.5, 125.5, 127.2,
127.2, 127.6, 128.5, 128.5, 128.6, 129.7, 130.3, 131.1, 137.8, 138.2, 140.2, 140.5, 140.7,
141.4; IR (CDCl3) 3413, 3053, 3022, 1599, 1491 cm™; HRMS m/z 359.1678 (calcd for
Cy7H2iN, 359.1674).

(E)-5-(1,2-Diphenylvinyl)-3-methoxy-9H-carbazole (10).

'H NMR (CDCl3) & 3.58 (s, 3H), 7.02-7.07 (m, 3H), 7.22-7.42 (m, 13H), 7.81 (d, J = 2.5
Hz, 1H), 7.98 (s, 1H); ’C NMR (CDCl;) 55.8, 105.2, 110.1, 111.5, 115.8, 121.5, 121.6,
123.6, 125.6, 127.3, 127.8, 128.7, 129.7, 130.3, 131.3, 134.8, 137.7, 140.1, 140.5, 141.1
(20), 153.5; IR (CDCl3) 3415, 3054, 2949, 1582, 1478 cm™'; HRMS m/z 375.1629 (calcd for
Cy7H21NO, 375.1623).

(E)-5-(1-Benzylidenepropyl)-1-methoxy-9H-carbazole (11a).

'H NMR (CDCl3) & 1.08 (t, J = 7.5 Hz, 3H), 2.91 (q, J = 7.5 Hz, 2H), 4.0 (s, 3H), 6.7 (s,
1H), 6.89 (d, J = 7.6 Hz, 1H), 7.06-7.10 (m, 2H), 7.30-7.50 (m, 7H), 7.77 (d, J = 8.0 Hz, 1H),
8.37 (s, 1H); °C NMR (CDCl3) 13.4, 25.9, 55.8, 105.8, 109.7, 115.6, 119.7, 120.0, 124.2,
125.5, 126.8, 128.6, 128.9, 129.0, 130.3, 138.2, 139.8, 139.9, 144.5, 145.8; IR (CDCl;) 3421,
2964, 2932, 1598 cm™'; HRMS m/z 327.1625 (calcd for Cp3H,NO, 327.1623).

(E)-Methyl 5-(1,2-diphenylvinyl)-9H-carbazole-3-carboxylate (12).

'H NMR (CDCl3) & 3.72 (s, 3H), 7.03 (s, 1H), 7.09 (t, J = 4.2 Hz, 1H), 7.20-7.42 (m, 13H),
8.07 (dd, J = 8.5, 1.4 Hz, 1H), 8.41 (s, 1H), 9.00 (d, J = 1.4 Hz, 1H); >*C NMR (CDCl;) 51.9,
110.1, 110.2, 121.4, 121.6, 122.6, 122.9, 125.6, 126.4, 127.2, 127.5, 127.7, 128.3, 128.5,
129.8, 130.4, 131.5, 137.5, 140.0, 140.5, 140.7, 140.9, 142.7, 167.9; IR (CDCls) 3323, 3021,

2947, 1691 cm™; HRMS m/z 403.1578 (calcd for CogHy NO,, 403.1572)
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(E)-3-Chloro-5-(1-phenylbut-1-enyl)-9H-carbazole (13a).

'H NMR (CDCls) & 1.09 (t, J = 7.5 Hz, 3H), 2.91 (q, J = 7.5 Hz, 2H), 6.73 (s, 1H), 7.14 (d,
J = 7.2 Hz, 1H), 7.29-7.52 (m, 10H), 8.08 (s, 1H), 8.19 (d, J = 1.5 Hz, 1H); °C NMR
(CDCl3) 13.4, 25.7, 109.6, 111.7, 120.5, 122.6, 124.5, 124.9, 125.9, 126.4, 127.1, 128.8,
129.2, 129.7, 137.9, 138.2, 140.0, 140.6, 144.0; IR (CDCl3) 3471, 2944, 2833 cm™'; HRMS
m/z 331.1132 (calcd for CooH;sNCl, 331.1128).
(E)-7-(1-Phenylbut-1-enyl)-11H-benzo[a]carbazole (14a).

'H NMR (CDCl3) & 1.10 (t, J = 7.6 Hz, 3H), 2.95 (q, J = 7.6 Hz, 2H), 6.75 (s, 1H), 7.16
(dd, J=7.3, 1.2 Hz, 1H), 7.26-7.60 (m, 10H), 7.98 (d, J = 7.5 Hz, 1H), 8.14 (d, / = 8.1 Hz,
1H), 8.23 (d, J = 8.1 Hz, 1H), 8.87 (s, 1H); >*C NMR (CDCls) 13.3, 26.1, 109.8, 118.5,
120.1, 120.6 (20C), 121.1, 121.8, 121.9, 124.7, 125.5, 125.7, 126.9, 128.7, 129.0, 129.1 (2C),
132.3, 135.3, 138.2, 139.1, 139.3, 144.5; IR (CDCl3) 3472, 3060, 2969, 1572 cm™'; HRMS
m/z 347.1682 (calcd for Co6Ha N, 347.1674).
(E)-7-(1,2-Diphenylvinyl)-2,3,4,11-tetrahydro-1H-benzo[a]carbazole (15).

'H NMR (CDCl3) § 1.91-2.03 (m, 4H), 2.93 (m, 4H), 6.86 (d, J = 8.2 Hz, 1H), 6.99 (dd, J =
7.2,0.8 Hz, 1H), 7.07 (s, 1H), 7.23-7.40 (m, 12H), 8.01 (s, 1H), 8.09 (d, J = 8.2 Hz, 1H); "°C
NMR (CDCls) 23.1, 13.6, 24.6, 29.9, 109.8, 119.1, 120.0, 120.4, 121.2, 121.6, 122.0, 124.9,
127.2, 127.6, 128.4, 128.6, 129.8, 130.2, 131.0, 134.9, 137.7, 139.1, 139.9, 140.2, 140.8,
141.3; IR (CDCls) 3434, 3053, 2929, 1601 cm™'; HRMS m/z 399.1993 (calcd for C3pHasN,
399.1987).

(E)-3-Methyl-4-(1-phenylbut-1-en-2-yl)-1/ H-indole (16a).
'H NMR (CDCl3) 8 1.09 (t, J = 7.2 Hz, 3H), 2.36 (s, 3H), 2.77 (q, J = 7.2 Hz, 2H), 6.47 (s,

1H), 6.96-6.99 (m, 2H), 7.18 (t, J = 7.8 Hz, 1H), 7.27-7.32 (m, 2H), 7.41 (d, J = 4.1 Hz, 4H),
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7.93 (s, 1H); >C NMR (CDCl3) 13.2, 13.4, 27.1, 110.0, 112.5, 119.7, 121.7, 122.9, 125.6,
126.6, 128.5, 128.9, 129.0, 137.3, 137.9, 138.4, 144.4; IR (CDCl3) 3418, 3021, 2964, 1598
cm'l; HRMS m/z 261.1518 (calcd for Ci9H 9N, 261.1521).
(E)-4-(1,2-Diphenylvinyl)-3-methyl-1H-indole (17).

'H NMR (CDCl3) & 2.24 (d, J = 0.8 Hz, 3H), 6.68 (s, 1H), 6.89 (dd, J = 7.2, 0.8 Hz, 1H),
6.99 (d, J = 1.0 Hz, 1H), 7.11-7.32 (m, 12H), 7.99 (s, 1H); *C NMR (CDCl3) 13.7, 110.4,
112.8, 121.7, 121.8, 123.2, 126.8, 127.3, 128.3 (2C), 128.4, 129.6, 130.5, 137.6, 137.9,
138.1, 141.3, 141.4; IR (CDCl3) 3422, 3053, 3021, 1695 cm™'; HRMS m/z 309.1522 (caled
for Co3H9N, 309.1518).

(E)-3-Methyl-4-(1-methyl-2-phenylvinyl)-1H-indole (18a).

'H NMR (CDCl3) § 2.34-2.35 (m, 6H), 6.51 (d, J = 1.0 Hz, 1H), 6.96-6.99 (m, 2H), 7.18 (t,
J = 8.0 Hz, 1H), 7.26-7.31 (m, 3H), 7.39-7.43 (m, 4H), 7.96 (s, 1H); *C NMR (CDCl3) 12.8,
21.8,110.1, 112.4, 119.1, 121.9, 122.8, 126.5, 128.4, 129.2, 129.4, 137.3, 138.5 (2C), 139.8;
IR (CDCls) 3416, 3051, 2919, 1597 cm™; HRMS m/z 247.1365 (caled for CigHp7N,
247.1361).

(E)-5-(1,2-Diphenylvinyl)-1,2,3,9-tetrahydrocarbazol-4-one (19).

'H NMR (CDCl3) § 2.05-2.12 (m, 2H), 2.48 (t, J = 6.1 Hz, 2H), 2.80 (t, J = 6.2 Hz, 2H),
6.51 (s, 1H), 7.02-7.34 (m, 13H), 9.72 (s, 1H); NMR (CDCls) 23.4, 23.8, 38.8, 110.8, 113.9,
123.9, 124.4, 125.4, 126.2, 126.8, 127.2, 127.3, 127.9, 128.0, 129.5, 134.0, 137.0, 138.5,
143.4, 144.2, 191.9; IR (CDCl3) 3168, 3052, 2952, 1621 cm™'; HRMS m/z 363.1631 (calcd
for Co6H21NO, 363.1623).

(E)-1-(1-Benzylidenepropyl)-3-(phenoxy)dibenzofuran (21a).
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'H NMR (CDCl3) 8 1.11 (t, J = 7.5 Hz, 3H), 7.87 (q, J = 7.5 Hz, 2 H), 6.76 (s, 1H), 7.05 (d,
J = 2.2 Hz, 1H), 7.04-7.58 (m, 14H), 8.01 (dd, J = 7.7, 0.6 Hz, 1H); >*C NMR (CDCl;) 13.3,
25.6, 100.9, 111.7, 114.5, 117.8, 119.3, 122.2, 123.0, 123.9, 124.2, 126.4, 127.3, 128.4,
128.8, 129.8, 130.2, 137.6, 140.9, 142.5, 156.9, 157.4, 157.5; IR (CDCl3) 3023, 2966, 1628
cm™'; HRMS m/z 390.1624 (caled for CogHyy0,, 390.1620).
(E)-1-(1-Benzylidenepropyl)-3-methoxydibenzofuran (22a).

'H NMR (CDCls) & 1.11 (t, J = 7.6 Hz, 3H), 2.88 (q, J = 7.6 Hz, 2H), 3.94 (s, 3H), 6.73 (s,
1H), 6.87 (s, 1H), 7.05 (s, 1H), 7.21-7.57 (m, 8H), 7.82 (d, J = 7.2 Hz, 1H); >C NMR
(CDCl3) 13.2, 25.6, 56.0,95.2, 111.0, 111.5, 115.5, 121.9, 122.8, 124.6, 125.7, 127.2, 128.7,
129.5, 137.7, 140.6, 142.9, 156.7, 158.0, 159.7; IR (CDCls) 3056, 3022, 2964, 1627 cm’;
HRMS m/z 328.1468 (calcd for C3H,00,, 328.1463).
(E)-3-Methoxy-1-(1-methyl-2-phenylvinyl)dibenzofuran (23a).

'H NMR (CDCl3) § 2.45 (d, J = 1.3 Hz, 3H), 3.9 (s, 3H), 6.81 (s, 1H), 6.88 (d, J = 2.2 Hz,
1H), 7.07 (d, J = 2.2 Hz, 1H), 7.25-7.57 (m, 8H), 7.93 (d, J = 7.2 Hz, 1H); ">C NMR
(CDCl3) 19.6, 56.0, 95.2, 110.6, 111.5, 114.7, 121.9, 122.8, 124.4, 125.8, 127.1, 128.7,
129.3, 130.2, 130.2, 136.5, 137.8, 142.2, 156.7, 158.0, 159.9; IR (CDCl3) 3054, 2938, 2835,
1627 cm™; HRMS m/z 314.1311 (caled for C5,H 505, 314.1307).
(E)-3-Methoxy-1-(1,3,3-trimethylbut-1-enyl)dibenzofuran (24a).

'H NMR (CDCl3) § 1.31 (s, 9H), 2.23 (d, J = 1.0 Hz, 1H), 3.90 (s, 1H), 5.68 (d, J = 1.0 Hz,
1H), 6.69 (d, J = 1.7 Hz, 1H), 6.97 (d, J = 1.7 Hz, 1H), 7.25-7.38 (m, 3H), 7.51 (d, J = 6.1
Hz, 1H), 7.88 (d, J = 6.0 Hz, 1H); *C NMR (CDCl3) 18.9, 31.2, 56.0, 94.5, 110.7, 111.4,
121.8, 122.6, 124.5, 125.5, 130.1, 133.2, 140.5, 143.8, 156.5, 157.8, 159.8; IR (CDCls) 2956,

2865, 1628 cm™'; HRMS m/z 294.1624 (calcd for Cy0H»,0,, 294.1620).
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(E)-3-Methoxy-1-(1-propylpent-1-enyl)dibenzofuran (25).

'H NMR (CDCl3) 6 0.89 (t, J = 7.3 Hz, 3H), 1.02 (t, J = 7.4 Hz, 3H), 1.32-1.45 (m, 2H),
1.48-1.60 (m, 2H), 2.31 (q, J = 7.3 Hz, 2H), 2.58 (t, J = 7.4 Hz, 2H), 3.90 (s, 3H), 5.67 (t, J =
7.2 Hz, 1H), 6.71 (d, J = 2.2 Hz, 1H), 6.99 (d, J = 2.2 Hz, 1H), 7.22-7.38 (m, 2H), 7.52 (d, J
= 8.2 Hz, 1H), 7.88 (d, J = 7.8 Hz, 1H); °C NMR (CDCls) 14.3, 14.4, 22.0, 23.2, 30.6, 33.6,
55.9,94.5,111.3, 111.4, 115.2, 121.9, 122.6, 124.7, 125.5, 130.9, 138.8, 141.4, 156.6, 157.8,
159.6; IR (CDCl3) 2957, 2930, 2869 cm’'; HRMS m/z 308.1781 (calcd for C,Ha,0s,
308.1776).

(E)-1-(1,2-Diphenylvinyl)-3-methoxydibenzofuran (26).

'H NMR (CDCl3) & 3.86 (s, 3H), 6.72 (s, 1H), 7.06-7.37 (m, 14H), 7.54 (d, J = 8.1 Hz, 1H),
7.92 (d, J = 8.1 Hz, 1H); "*C NMR (CDCls) 56.0, 95.7, 111.5, 112.8, 115.8, 122.0, 122.8,
124.5, 125.9, 127.5, 127.9, 128.5, 128.8, 129.8, 130.3, 131.6, 137.1, 140.0, 140.1, 140.9,
156.8, 158.2, 159.6; IR (CDCl3) 3054, 3022, 2958, 1629 cm™'; HRMS m/z 376.1470 (calcd
for C27H200,, 376.1463).
(E)-1-(2-Deutero-1,2-diphenylvinyl)-2,4-dideutero-3-methoxydibenzofuran (26-d).

This compound contains 70% deuterium in the vinylic position: '"H NMR (CDCls) & 3.86
(s, 3H), 6.72 (s, 0.30H), 7.09-7.37 (m, 12H), 7.54 (d, J = 8.1 Hz, 1H), 7.92 (d, J = 8.1 Hz,
1H). Compound 26-d obtained from the reaction conducted in the presence of 10 equiv of
D,0: 'H NMR (CDCl3) & 3.86 (s, 3H), 6.72 (s, 0.13H), 7.37-7.37 (m, 12H), 7.54 (d, J = 8.1
Hz, 1H), 7.92 (d, J = 8.1 Hz, 1H).

(E)-Ethyl 4-[2-(3-methoxydibenzofuran-1-yl)but-1-enyl|benzoate (27a).
'H NMR (CDCl3) & 1.09 (t, J = 7.4 Hz, 3H), 1.43 (t, J = 7.1 Hz, 3H), 2.86 (q, J = 7.4 Hz,

2H), 3.93 (s, 3H), 4.42 (q, J/ = 7.1 Hz, 2H), 6.72 (s, 1H), 6.83 (d, J = 2.2 Hz, 1H), 7.06 (d, J
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= 2.1 Hz, 1H), 7.22 (t, J = 7.7 Hz, 1H), 7.33-7.55 (m, 4 H), 7.87 (d, J = 7.7 Hz, 1H), 8.12 (d,
J = 8.3 Hz, 2H); >C NMR (CDCls) 13.2, 14.6, 25.7, 56.0, 61.2, 95.4, 111.0, 111.6, 115.3,
121.7, 122.8, 124.4, 125.8, 128.8, 128.8, 129.1, 129.9, 140.0, 142.2, 145.0, 156.7, 158.0,
159.7, 166.7; IR (CDCl3) 2969, 2935, 2873, 1716 cm'l; HRMS m/z 400.1679 (calcd for
Ca6H2404, 400.1675).

(E)-3-Methoxy-1-[1-(2-methoxybenzylidene)propyl]dibenzofuran (28a).

'H NMR (CDCl3) 8 1.01 (t, J = 7.6 Hz, 3H), 2.77 (q, J = 7.5 Hz, 2H), 3.84 (s, 3H), 3.93 (s,
3H), 6.79 (s, 1H), 6.87 (d, J/ = 2.2 Hz, 1H), 6.95 (d, J = 8.2 Hz, 1H), 7.03-7.08 (m, 2H), 7.19-
7.25 (m, 1H), 7.30-7.38 (m, 2H), 7.47-7.54 (m, 2H), 8.14 (d, J = 7.2 Hz, 1H); °C NMR
(CDCls) 13.3, 25.8, 55.5, 56.0, 95.0, 110.8, 110.9, 111.3, 115.7, 120.5, 122.4, 122.6, 124.7,
125.6, 126.8, 128.6, 130.0, 140.5, 142.3, 156.6, 157.7, 157.9, 159.6; IR (CDCls) 2962, 2933,

2834, 1627 cm™'; HRMS m/z 358.1573 (calcd for Co4H,03, 358.1569).
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CHAPTER 3. AN ARYL TO IMIDOYL PALLADIUM MIGRATION PROCESS

INVOLVING INTRAMOLECULAR C-H ACTIVATION

Based on a full paper submitted to the Journal of American Chemical Society
Jian Zhao and Richard C. Larock*
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Abstract. Biologically-interesting fluoren-9-one and xanthen-9-one derivatives have been
prepared by a novel aryl to imidoyl palladium migration, followed by intramolecular
arylation. The fluoren-9-one synthesis appears to involve both a palladium migration
mechanism and a C-H activation process proceeding through an unprecedented
organopalladium(IV) hydride intermediate. The results from deuterium labeling experiments

are consistent with the proposed duel mechanism.

Introduction

Transitional-metal catalyzed reactions are widely used in organic synthesis. Recently, the
through-space shift of a metal has been disclosed for both palladium- and rhodium-catalyzed
reactions.' It appears that palladium migration is a fairly general rearrangement that has been
observed to occur in a wide variety of systems. The through-space shift of palladium
generally involves an intramolecular C-H activation process.” Specifically, vinylic to aryl,’

aryl to alryl,4 alkyl to alryl,5 vinylic to aryl to allylic,6 and aryl to benzyl’ palladium migration
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processes have been reported. Palladium migration is synthetically useful, because it affords
an alternative way to introduce a palladium moiety into a specific position of an organic
molecule, which may not be readily accessible by conventional methods. Indeed, palladium
migration chemistry has been utilized to prepare a number of structurally diverse fused
polycycles.S'5

In the reported palladium migration processes, a 5- or 6-membered palladacycle
intermediate is generally involved, as shown in Scheme 1. Although the mechanism of
palladium migration is still under investigation, the evidence obtained from our previous
work on the vinylic to aryl to allylic palladium migration appears to favor a mechanism
which involves a palladacycle(IV) hydride i or a palladacycle(I) intermediate ii, which also
successfully explains the H-D exchange observed.® A recent theoretical study suggests a one-
step proton transfer mechanism for a related palladium migration process in which an
energetically favored transition state iii is presumably involved.* However, this mechanism
fails to account for the hydrogen-deuterium exchange observed in many of our migration
processes, when such processes are run in the presence of D,0.

Scheme 1.

2 i

We recently briefly communicated the synthesis of fluoren-9-ones by an aryl to imidoyl

palladium migration process (Scheme 2).* Herein, we wish to report a full account of this
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novel palladium migration process, which affords a fairly general and efficient synthesis of
biologically-interesting fluoren-9-ones and xanthen-9-ones, plus we also wish to provide
evidence with regard to the reaction mechanism, which appears to involve both the usual
palladium migration mechanism and an unprecedented mechanism proceeding through an
organopalladium(IV) hydride intermediate. To the best of our knowledge, although imines
have been widely employed in Pd-mediated reactions, especially chelation-assisted reactions,
the direct activation of imidoyl C-H bonds by catalytic palladium is unknown. In the past,
imidoyl palladium complexes have generally been obtained by the oxidative addition of

imidoyl halides to Pd(0) species.’

PQ

Scheme 2

| cat. Pd(0) _HCI_ O
“HI H,0

I« If©

Results and Discussion

Synthesis of Fluoren-9-ones via Aryl to Imidoyl Palladium Migration. Fluoren-9-
ones are the core structures of many biologically-interesting and pharmaceutically-important
compounds.lo The most useful syntheses of fluoren-9-ones include Friedel-Crafts ring
closures of biarylcarboxylic acids,'' intramolecular [4 + 2] cycloaddition reactions of

conjugated enynes,12 the oxidation of fluorenes,”” the remote metalation of 2-
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biphenylcarboxamides ~ or  2-biphenyloxazolines,'* and the palladium-catalyzed
cyclocarbonylation of o—hallobiaryls.15 Those methods generally suffer from the use of strong
acids, strong bases, toxic CO gas or harsh reaction conditions.

Our previous work indicated that the aury1—3’4 or alkylpalladium® intermediates generated by
palladium migration processes can be readily trapped by intramolecular arylation to afford a
variety of polycyclic structures. Therefore, we envisioned that an imidoyl palladium
intermediate generated from an aryl to imidoyl palladium migration process might also
undergo facile intramolecular arylation to afford biologically-interesting fluoren-9-one
derivatives. To examine this possibility, we first treated imine 1a (0.25 mmol) with 5 mol %
Pd(OAc),, 5 mol % bis(diphenylphosphino)methane (dppm), and 2 equivs of CsO,CCMej;
(CsPiv) in DMF (4 mL) at 100 °C (Table 1, entry 1). After 12 h reaction, the crude imine
product obtained was hydrolyzed by aqueous HCI in acetone to afford a 95% yield of the
desired fluoren-9-one 2a after flash chromatography. It appears that the “optimal” palladium
migration conditions, which have been successfully employed in a number of previously
reported palladium migration reactions, work well in this fluoren-9-one synthesis.

We next investigated the scope and limitations of this process, as shown in Table 1. The
effect of substituents on the arene which would bear the imidoyl palladium moiety was first
examined. A 5- methoxy-substituted imine 1b was prepared and allowed to react in the
usual fashion, and a 90% yield of the fluoren-9-one 2b was obtained (entry 2). However,
imine 1c bearing a methyl group on the 4 position of the arene, only affords a 56% yield of
the desired product 2¢ (entry 3). In this case, the electron density on the imidoyl group is
presumably increased by the para methyl group, which apparently retards imidoyl C-H

activation. The 5-fluoro-substituted imine 1d affords an 80% yield of the fluoren-9-one
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entry imine t1(r}111)e product(s) % yield
O
7\
X —

1 la 12 2a 95
2 5-OMe 1b 12 2b 90
3 4-Me lc 24 2c 56
4 1d 12 2d 80

O

N
30,

5 Y = 4-Me le 4 2e 97
6 4-OMe 1f 2b 100
7 4-CO,Me 1g 12 2f 100
8 4-NO, 1h 12 2g 100
9 2-Cl li 48 2h 65

? F

1 6 Q.O 2i 95
F
Q Me
1k Jj 92

o
"
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Table 1. (Continued)

entry imine time product(s) % yield

(h)

O
g 40"
12 O |I> n 4 O 91 (9:1)°
J i

Q .OO 21

NPh
/N
13 D Im 2 _ 2m 8
z I X0
Y/
0

*The reaction was carried out employing 0.25 mmol of the imine, 5 mol % Pd(OAc),, 5
mol % (Ph,P),CH, (dppm) and 2 equivs of CsO,CCMes (CsPiv) in DMF (4 mL) at 100
°C unless otherwise noted. "The ratio of products 2k:2l was determined by GC analysis.
“The reaction was run at 110 °C. “Compound 2m is not stable under our usual hydrolysis
conditions; omitting the hydrolysis step, the imine intermediate 2m was isolated in an
82% yield.

product 2d (entry 4).

We then investigated the effect of substituents on the arene, which undergoes the
cyclization reaction. Surprisingly, almost quantitative yields of fluoren-9-ones have been
obtained for both electron-rich and electron-poor functionally-substituted substrates, which
raises some question as to whether the intramolecular arylation step proceeds via
electrophilic aromatic substitution as usually assumed (entries 5-8). These results also
suggest that the palladium migration could be the rate-determining step in this overall
transformation. The only exception to the high yields was the reaction employing the

substrate 1i with a 2-chloro group, where only a 65% yield of the fluoren-9-one 2j was
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obtained, possibly due to competing oxidative addition of the aryl chloride or perhaps
hindered reaction of the aromatic ring or simply reduction in the number of ortho positions
available for reaction (entry 9). Imines 1j and 1k afforded 95% and 92% yields of the
expected fluoren-9-ones, respectively (entries 10 and 11). Once again neither electron-
donating nor electron-withdrawing groups on the ring undergoing substitution seem to have a
significant effect on the yield. When the naphthalene substrate 11 was prepared and allowed
to react under our usual reaction conditions, arylation took place in both the 3 and 1 positions
of the naphthalene in a 91% overall yield, with the less hindered product 2k predominant
(9:1) (entry 12). The furan- containing ring present in imine 1m facilitates electrophilic
aromatic substitution and within 2 h the reaction was complete (entry 13). However, because
the resulting 8 H-indeno[2,1-b]furan-6-one was not stable under our hydrolysis conditions, we
were only able to isolate a 50% yield of the ketone. Omitting the hydrolysis step, the
corresponding imine 2m was obtained in an 82% yield.

Mechanistic Studies of the Fluoren-9-one Synthesis. After we investigated the reaction
scope and limitations, we examined the reaction mechanism of this fascinating process. In
fact, it appears that this reaction proceeds through a rather unusual mechanism. Presumably,
Pd(0) first undergoes oxidative addition to the aryl iodide 1a to generate intermediate A. The
palladium moiety may then undergo further oxidative addition of the imidoyl C-H bond to
afford a palladacycle(IV) intermediate B, which can undergo reductive elimination to form
palladacycle(IT) C or the imidoyl palladium intermediate D. Alternatively, palladacycle(Il) C
may be directly generated from A or it may be formed through the intermediacy of B, where
an equilibrium between B and C may be involved. A similar equilibrium has been

demonstrated in a previously reported example of a consecutive vinylic to aryl to allylic
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Scheme 3. Plausible Palladium Migration Mechanism (Route A).
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palladium migration.® Intermediate C can also lead to intermediate D, which then undergoes

intramolecular arylation to afford the cyclization product E, and the imine product after
reductive elimination. According to this proposed mechanism, the imidoyl hydrogen (H")
shifts to the ortho position of the aniline, when the palladium moiety migrates from the aryl
position to the imidoyl position. By observing the movement of H*, we should be able to
detect the through-space shift of the palladium moiety. This proton shift should be readily
determined by an appropriate isotope labeling experiment (Scheme 4). Indeed, deuterium-
substituted imine 1n was allowed to react under our “optimal” reaction conditions, and the
aniline (3) obtained upon hydrolysis of the resulting imine was isolated (eq. 1). Thirty five
percent deuterium incorporation was observed in one of the two ortho positions of the aniline
as determined by 'H NMR spectroscopy and GC-MS analysis. This reaction was repeated in

the presence of 10 equiv of D,O hoping that higher deuteriumincorporation could be
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Scheme 4. Deuterium Labeling Experiments.
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observed in the aniline (3). However, only slightly higher 45% deuterium incorporation was
observed, which is apparently inconsistent with the proposed mechanism (route A). If the
aryl to imidoyl palladium migration is a reversible process as observed with the analogous
aryl to aryl palladium migrations,*'® we should be able to observe deuterium incorporation in
both of the ortho positions when the reaction is conducted in the presence of a deuterium
source. However, incorporation of only one deuterium was observed.

We have also attempted to trap the aryl and imidoyl palladium intermediates by a Heck
reaction (Scheme 5) as we did in our aryl to aryl palladium migration chemistry.*'®
Analogous Heck reactions of acylpalladium intermediates are well known.!” However, after
a 24 h reaction, only ester 6 was observed by GC-MS analysis, and ester 7, which presumably

should be generated from the Heck reaction of the postulated imidoyl palladium intermediate

www.manaraa.com



73

was not evident. These results indicate that the aryl to imidoyl palladium migration process
is probably not a reversible process in the absence of intramolecular arylation as a driving
force. Indeed, the whole process appears to be rather unusual compared with previously
reported examples of palladium migration. Although H-D exchange occurs during the course
of the palladium migration, this leads to low deuterium incorporation. It is difficult to
attribute all of the deuterium loss to H-D exchange, since the yield of deuterated product was
only slightly improved when the reaction was conducted in the presence of an additional

deuterium source.

oM o S

Scheme 5

/\COQEt\ Z>CO,Et ‘
SO od Sh O
_
5 COEt P> G0,k PR

An alternative pathway for generation of the fluoren-9-one product without invoking an
imidoyl hydrogen shift is proposed in Scheme 6. In this mechanism, the arylpalladium
intermediate A undergoes intramolecular C-H activation to afford palladacycle(IV) B;
subsequent reductive elimination could generate palladacycle(Il) C. It is also possible that
palladacycle(Il) C could be generated directly from arylpalladium intermediate A. At this
point, the palladium moiety might insert into the C-H bond of the neighboring arene to afford
an unprecedented palladacycle(IV) intermediate F. Such a palladacycle might be expected to

undergo reductive elimination to afford palladacycle E, which after a second reductive
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Scheme 6. Plausible C-H Activation Mechanism (Route B).
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elimination would generate the expected imine product. In this mechanism, H" is lost to the
solution when forming intermediate C, but H" shifts from the biphenyl moiety to one of the
two ortho positions of the aniline. Deuterium labeled substrate 10 (Scheme 4, eq. 2) was
prepared and allowed to react under the standard reaction conditions. If this mechanism is in
force, we expect to see some deuterium at one of the two ortho positions of the resulting
aniline if the reaction goes through route B. Indeed, we observed 35% deuterium
incorporation in one of the two ortho positions of the resulting aniline. At this point, we
reasoned that this fluoren-9-one synthesis actually goes through a duel mechanism, a
palladium migration mechanism (Scheme 3, route A) and an unprecedented intramolecular
C-H activation mechanism (Scheme 6, route B). Based on this assumption, one would expect
that higher deuterium incorporation would be obtained if both H* and H® are labeled with

deuterium. Indeed, when substrate 1p (Scheme 4, eq. 3) was employed in this reaction, 75%
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deuterium incorporation in the aniline ring was observed, which is consistent with our
hypothesis.

The final intramolecular arylation step of route A (Scheme 3) would release one equivalent
of HX or DX into solution, which might add to palladacycle(Il) C to afford a new
palladacycle(IV) intermediate G. Subsequent reductive elimination could afford the ortho
deuterated aniline product (Scheme 7). This can also explain the deuterium incorporation
into the aniline observed in the experiment described in Scheme 4, eq. 2. However, if one
equiv of DX can afford as much as 35% deuterium incorporation, even when the
concentration of DX is quite low because it is gradually released into the solution, the
analogous reaction run in the presence of 10 equiv of D,0 should afford very high deuterium
incorporation, at least comparable to the results obtained from the experiments described in
Scheme 4, eq. 3 in which two equiv of DX are released. However, we did not observe a
significant increase in deuterium incorporation when 10 equiv of D,O was present; only 45%
deuterium incorporation was observed. Remember that these migration reactions have been
conducted in the presence of 2 equiv of CsPiv

Scheme 7

base, which should quickly neutralize the DX acid generated by the final arylation step.
Thus, this pathway for the introduction of deuterium into the aniline in the reaction reported

in Scheme 3, eq. 2, is highly unlikely.
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It has been shown previously that palladium can migrate more than once in these migration
reactions.*® Thus, an interesting question is whether the imidoyl palladium intermediate can
migrate the palladium to a second aryl position. As shown in Scheme 8, imine 1q was
prepared and allowed to react under our usual reaction conditions, but this reaction failed to
afford any of the desired product. By heating the reaction to 120 °C, after 7 days, we were
able to obtain a 35% yield of the desired 1-aminodibenzo[b,d]furan (20).8 In this case,

palladium must have migrated from the aryl to the imidoyl position

Scheme §
Ph
5% Pd(OAC),
5% dppm O O
©\ 2 CsPiv, DMF
120°C, 7 d o 359
l Ph Ph Ph Ph ]
/A

N7 ~Pdl XN N
PhO PhO 0 1

solely through the migration mechanism shown in Scheme 3. According to our study of the

vinylic to aryl palladium migration chemistry,* the palladium moiety tends to migrate to the
more electron-rich arene during the course of the migration. The palladium migration from
the phenoxy-substituted arene to the imidoyl position is probably not a very favorable
process, but palladium migration from the imidoyl position back to the aryl position of this
arene, which is ortho to the phenoxy group is quite possibly a favorable process.

Activation of the imidoyl C-H bond in this fluoren-9-one synthesis proceeds through a 5-

membered ring intermediate. One might wonder whether palladium can activate an imidoyl
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C-H bond by a 6-membered ring intermediate. Indeed, substrate 1r has been prepared and
allowed to react under our usual reaction conditions. After 24 h of reaction at 100 °C, only a

40% vyield of the desired fluoren-9-one product was obtained (Scheme 9). Although it

appears that 6-membered ring activation is feasible, the reaction efficiency is not high.
Scheme 9
5% Pd(OAC),

/@ 5% dppm HCI .
2 CsPiv, DMF
O 100 °C, 24 h 2a 40%

PdI Pd
NPh

E

Synthesis of Xanthones via Aryl to Imidoyl Palladium Migration. After developing a

general and efficient synthesis of fluoren-9-one derivatives, we attempted to extend this
protocol to the synthesis of 6-membered ring heterocycles, such as xanthones, thioxanthones
and acridones. Xanthones are secondary metabolites found in higher plant families, fungi and
lichens exhibiting interesting pharmaceutical properties."® Most common syntheses of the
xanthone skeleton typically involve a multi-step procedure, which generally proceeds through
the intermediacy of a benzophenone or a diaryl ether."” Recently, we reported a one-step
synthesis of xanthones by a tandem coupling-cyclization of 2-hydroxybenzoates and arynes.20

In our fluoren-9-one synthesis, palladium migrates from an aryl position to an imidoyl
position and then undergoes intramolecular arylation through a 6-membered ring

intermediate. We envisioned that an imidoylpalladium intermediate might also undergo
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intramolecular arylation by a 7-membered ring intermediate to afford 6-membered ring
heterocycles, as shown in Scheme 10. Indeed, imine 4a was allowed to react under our
“optimal” conditions and a 72% yield of the xanthone product Sa was obtained by flash
chromatography.

The reaction scope and limitations of this new xanthone synthesis are shown in Table 2.
We first investigated the effect of the substituent on the arene bearing the imine group.
Methyl-substituted substrate 4b affords an 80% yield of the xanthone Sb (entry 2), and
methoxy-substituted imine 4c¢ affords a 77% yield of product S¢ (entry 3). Imines bearing an
electron-withdrawing group have also been prepared and subjected to the usual reaction
conditions. The imines 4d and 4e substituted with NO, and CF; groups afforded 56% and
38% yields of the xanthone products Sd and Se, respectively (entries 4 and 5). Note that a
higher temperature is required here. Substrates bearing a functional group Y on the arene

Scheme 10. Plausible Mechanism for the Synthesis of Xanthones.
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)
{
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OPh J

which undergoes substitution have also been prepared. The methoxy-, chloro-, alkyl-, and

PhN

aryl-substituted imines 4f-j have been allowed to react under our usual reaction conditions,
and 56-77% yields of the substituted xanthones S5f-j have been obtained (entries 6-10).

However, the reaction was very sluggish when imine 4k bearing an electron-withdrawing
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Table 2. Synthesis of Xanthones”

temp Yo

entry imine °C) product yield

4 ~2°0
X Y
1 H H 4a 100 Sa 72
2 5-Me H 4b 100 5b 80
3 5-OMe H 4c 100 Sc 77
4 5-CF; H 4d 120 5d 56
5 5-NO, H 4e 120 Se 38
6 H OMe 4f 100 5¢ 77
7 H Cl 4g 100 5f 73
8 H i-Pr 4h 100 5g 56
9 H Ph 4i 100 5h 63
10 H -Bu 4j 100 5i 61
11 H CO,Me 4k 120 5j 10

Me
12 ! Me 4 100 O O 5k 79
0
O OMe
o)
13 | 4m 120 51 o
CLO .
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Table 2. (Continued)

temp %
°C) product yield

|
)@ 0
N
14 | 4n 100 O O Sm 20
O N
N
Me

entry imine

Me

“The reaction was carried out employing 0.25 mmol of the imine, 5 mol % Pd(OAc),, 5
mol % (Ph,P),CH, (dppm) and 2 equivs of CsO,CCMes (CsPiv) in DMF (4 mL) under
Ar for 24 h. "Starting materials were recovered.

ester group was allowed to react. After 1 d of reaction at 120 °C, only about 10% of the
desired product was observed by GC-MS analysis (entry 11). This intramolecular arylation
presumably proceeds via an electrophilic aromatic substitution,”' although some evidence
points towards a proton transfer mechanism.”> Thus, an electron-withdrawing substituent
might be expected to disfavor the cyclization step, especially for this cyclization proceeding
by a difficult 7-membered ring intermediate I. Note, however, that cyclization to form a
fluoren-9-one was not impeded by the presence of strong electron-withdrawing groups (see
Table 1, entries 7 and 8). Introducing a methoxy group ortho to the oxygen atom of the
phenoxy group could facilitate electrophilic aromatic substitution, but might introduce some
steric hindrance at the same time, as well as reducing statistically the number of positions
available for cyclization. In fact, the reaction of imine 41 affords a 79% yield of the
xanthone product, which indicates that electronic factors apparently predominate (entry 12).
We have also attempted to extend this protocol to the synthesis of thioxanthones, an
important class of potential anti-cancer drugs.”> When imine 4m was treated under the

reaction conditions used in our xanthone synthesis, we did not observe any cyclization
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product, and we recovered most of the starting material (entry 13). Repeating this reaction at
120 °C afforded similar results. The presence of the larger sulfur atom apparently disfavors
cyclization through the now larger 7-membered ring intermediate or perhaps the sulfur
chelates the intermediate imidoyl palladium species preventing cyclization.

Acridones are also naturally-occurring compounds exhibiting a variety of interesting
biological activities. They are important anti-leishmanial, anti-fungal, anti-tumor and DNA-
intercalating anti-cancer drugs.24 We prepared imine 4n from the corresponding aldehyde
and treated it under our standard palladium migration conditions. After 1 d of reaction at 100
°C, a 20% yield of the acridone 5m was obtained (entry 14). We have also conducted this

reaction at 120 °C, but failed to observe any improvement in the reaction efficiency.

Conclusions

In summary, we have established a novel 1,4-Pd migration from an aryl position to an
imidoyl position, which affords a general synthesis of the biologically-interesting fluoren-9-
one and xanth-9-one ring systems. Both electron-rich and electron-poor substrates have been
screened in this process, and generally good yields of the desired product have been obtained.
The fluoren-9-one synthesis appears to involve both a standard palladium migration
mechanism (route A) and a C-H activation mechanism (route B), which proceeds through an
unprecedented organopalladium(IV) hydride intermediate. The results from the deuterium

labeling experiments are consistent with the proposed duel mechanism.

Experimental Section

I. General Procedures.
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All 'H and BC spectra were collected in CDCIl3; unless noted otherwise. Thin layer
chromatography was performed using 60-mesh silica gel plates, and visualization was
affected using short wavelength UV light (254 nm) and a basic KMnO;, solution. All high
resolution mass spectra were recorded using EIL

All reagents were used directly as obtained commercially unless otherwise noted. Cesium
pivalate was prepared according to the procedure of Campo and Larock.”

II. Noncommercial compounds.

General procedure for synthesis of the biarylcarboxaldehydes. To 10 mL of a 2:1
DMF/H;0 solution containing 5.0 mmol of 2-bromobenzaldehyde and 5.0 mmol of Na,COs
were added 5.0 mmol of arylboronic acid and the reaction mixture was stirred for 2 min.
Pd(OAc), (5 mol %) was then added and the flask was flushed with Ar, sealed and allowed to
stir at 25 °C for 12 h. The reaction mixture was extracted with ethyl ether (2 x 10 mL). The
combined ether layers were dried over anhydrous Na;SO4 and concentrated under vacuum to
yield the crude product, which was purified by flash chromatography on silica gel using ethyl
acetate/hexanes as eluent.
4-Methoxybiphenyl-2-carboxaldehyde.

'H NMR (CDCls) & 3.90 (s, 3H), 7.20 (dd, J = 8.5, 2.8 Hz, 1H), 7.34-7.47 (m, 6H), 7.51 (d,
J =2.84 Hz, 1H), 9.95 (s, 1H); °C NMR (CDCl3) & 55.8, 110.1, 121.6, 128.0, 128.6, 130.5,
132.3, 134.7, 137.7, 139.3, 159.3, 192.5; IR (CDCl3) 3028, 2936, 2850, 1686 cm™; HRMS
m/z 212.0841 (calcd for C14H;20,, 212.0837).
5-Methylbiphenyl-2-carboxaldehyde.

'H NMR (CDCls) § 2.44 (s, 3H), 7.24 (s, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.35 (d, J = 7.3 Hz,

1H), 7.41-7.47 (m, 3H), 7.95 (d, J = 8.0 Hz, 1H), 9.94 (s, 1H); *C NMR (CDCl3) & 22.1,
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127.9, 128.3, 128.6, 128.9, 130.3, 131.6, 131.7, 138.1, 144.8, 146.4, 192.3; IR (CDCls) 3027,
2848, 1690 cm™; HRMS m/z 196.0891 (calcd for C;4H;,0, 196.0888).
4-Fluorobiphenyl-2-carboxaldehyde.

Due to C-F coupling, the 5C NMR showed more peaks than carbon numbers. 'H NMR
(CDCl3) 6 7.30-7.35 (m, 3H), 7.41-7.49 (m, 4H), 7.67 (dd, J = 8.9, 2.84 Hz, 1H), 9.90 (s,
1H); °C NMR (CDCls) § 113.7, 113.9, 115.6, 120.9, 121.1, 128.5, 128.8, 130.4, 133.0,
135.4, 136.9, 142.3, 142.3, 161.1, 163.6, 191.3; IR (CDCl3) 3066, 2855, 1691 cm™'; HRMS
m/z 200.0639 (calcd for C;3HoFO, 200.0637).
4'-Methylbiphenyl-2-carboxaldehyde.

'H NMR (CDCl3) & 2.42 (s, 3H), 7.24-7.29 (m, 4H), 7.42 (d, J = 8.0 Hz, 1H), 7.47 (d, J =
7.6 Hz, 1H), 7.61 (td, J = 7.6, 1.2 Hz, 1H), 8.01 (dd, J = 8.0, 1.2 Hz, 1H), 9.99 (s, 1H); "°C
NMR (CDCl3) 6 21.3, 127.7, 129.3, 130.2, 130.9, 133.7, 133.9, 134.9, 138.2, 146.1, 192.7 ;
HRMS m/z 196.0891 (calcd for C;4H;»0, 196.0888).
4’-Methoxybiphenyl-2-carboxaldehyde.

'H NMR (CDCl3) § 3.87 (s, 1H), 7.00 (d, J = 8.7 Hz, 2H), 7.30 (d, J = 8.7 Hz, 2H), 7.41-
7.48 (m, 2H), 7.61 (td, J = 7.5, 1.2 Hz, 1H), 8.00 (dd, J = 7.5, 1.2 Hz, 1H), 9.99 (s, 1H); "°C
NMR (CDCl3) 6 55.6, 114.1, 127.5, 127.8, 130.2, 131.0, 131.5, 133.7, 133.9, 145.8, 159.9,
192.8; HRMS m/z 212.0839 (calcd for C4H,0,, 212.0837).

Methyl 2’-formylbiphenyl-4-carboxylate.
'H NMR (CDCl3) & 3.97 (s, 3H), 7.43-7.48 (m, 3H), 7.54 (t, J = 9.0 Hz, 1H), 7.70 (td, J =

7.5, 1.5 Hz, 1H), 8.05 (dd, J = 7.8, 1.5 Hz, 1H), 8.13-8.17 (m, 2H), 9.96 (s, 1H); °C NMR
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(CDCl3) & 52.5, 128.1, 128.6, 129.8, 130.1, 130.3, 130.8, 133.8, 133.9, 142.6, 144.8, 166.8,
191.9; HRMS m/z 240.0789 (calcd for C;5H;,03, 240.0786).
4’-Nitrobiphenyl-2-carboxaldehyde.

'H NMR (CDCl3) & 7.44 (dd, J = 7.6, 1.2 Hz, 1H), 7.55-7.63 (m, 3H), 7.71 (td, J = 7.6, 1.6
Hz, 1H), 8.06 (dd, J = 8.0, 1.2 Hz, 1H), 8.34 (d, J = 6.8 Hz, 2H); 9.97 (s, 1H); °C NMR
(CDCl3) 6 123.8, 129.1, 129.3, 130.8, 131.0, 133.8, 134.1, 143.2, 145.0, 147.9, 191.3; HRMS
m/z 227.0592 (calcd for C;3HgNO3, 227.0582).
2’-Chlorobiphenyl-2-carboxaldehyde.

'H NMR (CDCl3) § 7.31-7.39 (m, 4H), 7.48-7.54 (m, 2H), 7.66 (td, J = 7.5, 1.5 Hz, 1H),
8.04 (dd, J = 7.5, 1.5 Hz, 1H), 9.80 (s, 1H); *C NMR (CDCls) & 127.0, 127.6, 128.7, 129.8,
129.9, 131.1, 131.9, 133.7, 133.9, 134.0, 137.0, 142.9, 191.7; HRMS m/z 216.0348 (calcd for
Ci3HoClO, 216.0345).
3’,5’-Difluorobiphenyl-2-carboxaldehyde.

'H NMR (CDCls) & 6.78-6.81 (m, 3H), 7.29 (d, J = 7.8 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H),
7.55 (td, J = 7.5, 1.5 Hz, 1H), 7.91 (dd, J = 7.8, 1.5 Hz, 1H), 9.87 (s, 1H); °C NMR (CDCl5)
0 103.7 (t), 113.3 (q), 128.3, 128.9 (1), 130.5, 133.7 (t), 141.3 (m), 143.3 (1), 161.2 (d), 164.5
(d), 191.4; HRMS m/z 218.0547 (calcd for C,3HsF,0, 218.0543).
3’,5’-Dimethylbiphenyl-2-carboxaldehyde.

The spectral properties were identical to those previously reported.26
2-(Furan-3-yl)benzaldehyde.

'H NMR (CDCl3) § 6.57 (s, 1H), 7.41-7.46 (m, 2H), 7.52-7.62 (m, 3H), 7.97 (dd, J = 7.8,

1.2 Hz, 1H), 10.21 (s, 1H); °C NMR (CDCl3) § 112.3, 112.6, 122.6, 127.8, 127.9, 130.6,
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133.9, 134.0, 136.4, 141.4, 143.6, 192.2; HRMS m/z 172.0528 (calcd for C;;H3O»,
172.0524).
5-Phenoxy-2-iodoaniline.

3-Phenoxyaniline (7.8 mmol) was added to a mixture of I, (7.9 mmol) and AgOAc (7.9
mmol) in ethanol (50 mL) at room temperature. The mixture was stirred for 14 h after which
the solid was removed by filtration and the filtrate was evaporated under vacuum to afford a
black residue, which was dissolved in ethyl ether and washed with satd aq Na,S,03; and
water. The organic layer was dried over anhydrous Na,SO4 and the solvent was removed
under reduced pressure. The residue was purified by flash chromatography on silica gel
using ethyl acetate/hexanes as the eluent. The compound was obtained as a yellow oil: 'H
NMR (CDCls) 6 4.07 (s, 2H), 6.17 (dd, J = 8.7, 3.0 Hz, 1H), 6.37 (d, J = 3.0 Hz, 1H), 6.98-
7.01 (m, 2H), 7.10 (tt, J = 7.5, 1.2 Hz, 1H), 7.29-7.34 (m, 2H), 7.51 (d, J = 8.7 Hz, 1H); °C
NMR (CDCls) & 76.4, 104.9, 110.9, 119.4, 123.8, 129.9, 139.7, 148.1, 156.8, 159.1; HRMS
m/z 310.9811 (caled for C;,H;0INO, 310.9808).
N-Phenylmethylene-2-iodo-5-phenoxyaniline.

This compound was prepared following the procedure used for the preparation of the N-
(biaryl-2-ylmethylene)-2-iodoanilines. The resulting imine was used for the next step
without further characterization.
1-Aminodibenzo[b,d]furanamine (20).

The spectral properties were identical to those previously reported.”’
4'-Methylbiphenyl-2-carboxaldehyde-d.

This compound was prepared through the strategy shown below. 'H NMR (CDCl3) § 2.42

(s, 3H), 7.24-7.29 (m, 4H), 7.40-7.47 (m, 2H), 7.61 (td, J = 7.6, 1.2 Hz, 1H), 8.02 (dd, J =
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8.0, 1.2 Hz, 1H); "“C NMR (CDCl3) & 21.43, 127.77, 127.78, 129.42, 130.28, 131.02,

133.75, 135.04, 138.23, 146.20, 192.24 (t, J = 27 Hz).

Me Me
Me
CO.Me 5 1. LAD O
@ . d(0) 2. PCC
| COsMe CDO
B(OH), O O

2-(Phenyl-ds)-benzaldehyde.
This compound was prepared through the strategy shown below. 'H NMR (CDCls) & 7.44-
7.52 (m, 2H), 7.63 (td, /= 7.4 Hz, 1.3 Hz, 1H), 8.04 (dd, /= 7.7 Hz, 1.2 Hz, 1H), 9.99 (d, J =

0.6 Hz, 1H); °C NMR (CDCls) § 127.80, 128.00, 121.02, 122.80, 137.79, 146.15.

2-(Phenyl-ds)-benzaldehyde-d.
This compound was prepared through the strategy shown below. 'H NMR (CDCls) & 7.44-
7.52 (m, 2H), 7.63 (t, J = 7.4 Hz, 1H), 8.04 (dd, J = 7.7 Hz, 1.2 Hz, 1H). °C NMR (CDCls)

0 127.79, 128.01, 131.01, 133.84, 137.76, 146.16.

D

D B(OH)2 COMe  pyq)
RO
D D |

D

General procedure for synthesis of the 2-(aryloxy)benzaldehydes. To 10 mL of a DMA
solution containing 5.0 mmol of 2-fluorobenzaldehyde and 5.0 mmol of phenol were added

5.0 mmol of K,CO; and the reaction mixture was stirred for 2 h at 170 °C under an Ar
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atmosphere. The reaction mixture was cooled to room temperature and worked up using the
procedure described previously.
2-(Phenoxy)benzaldehyde.

The spectral properties were identical to those previously reported.28
5-Methyl-2-(phenoxy)benzaldehyde.

'H NMR (CDCl3) § 2.36 (s, 3H), 6.83 (d, J = 8.5 Hz, 1H), 7.02-7.04 (m, 2H), 7.15 (t, J =
7.4 Hz, 1H), 7.32-7.38 (m, 3H), 7.74 (d, J = 2.0 Hz, 1H), 10.45 (s, 1H); ?C NMR (CDCl;) &
20.8, 119.0, 119.3, 124.1, 127.1, 128.5, 130.2, 133.5, 136.8, 157.3, 157.9, 189.7; IR (CDCls)
3039, 2857, 1689 cm™'; HRMS m/z 212.0841 (calcd for C14H;,0,, 212.0837).
5-Methoxy-2-(phenoxy)benzaldehyde.

'H NMR (CDCl3) § 3.81 (s, 3H), 6.90 (d, J = 9.0 Hz, 1H), 6.96 (d, J = 7.8 Hz, 2H), 7.07-
7.12 (m, 2H), 7.29-7.35 (m, 2H), 7.39 (d, J = 3.2 Hz, 1H), 10.37 (s, IH); *C NMR (CDCl3) &
56.0, 110.1, 118.2, 121.8, 123.7, 123.9, 128.2, 130.2, 153.6, 156.1, 158.2, 189.2; IR (CDCls)
2940, 2858, 1686 cm™'; HRMS m/z 228.0789 (calcd for C;4H;,03, 228.0786).
5-Trifluoromethyl-2-(phenoxy)benzaldehyde.

'H NMR (CDCl3) 8 6.93 (d, J = 8.8 Hz, 1H), 7.13 (d, J = 8.2 Hz, 1H), 7.28 (t, J = 7.5 Hz,
1H), 7.45 (t, J = 8.0 Hz, 1H); 7.68 (dd, J = 8.7, 2.2 Hz, 1H), 8.19 (d, J = 1.8 Hz, 1H), 10.57
(s, 1H); >C NMR (CDCl3) & 117.8, 120.5, 125.8, 126.1, 126.2 (q), 126.3, 130.7, 132.4 (q),
155.0, 162.8, 188.2; IR (CDCl3) 3068, 2870, 1695 cm™; HRMS m/z 266.0559 (calcd for
Ci4HoF;0,, 266.0555).

5-Nitro-2-(phenoxy)benzaldehyde.
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'H NMR (CDCl3) § 6.90 (d, J = 9.3 Hz, 1H), 7.15-7.17 (m, 2H), 7.29-7.33 (m, 1H), 7.45-
7.49 (m, 2H), 8.23 (dd, J = 9.2, 2.9 Hz, 1H), 8.64 (d, J = 2.9 Hz, 1H), 10.52 (s, 1H); °C
NMR (CDCls) 6 117.1, 121.0, 124.6, 125.6, 126.6, 130.5, 130.9, 142.7, 154.1, 164.8, 187.5;
IR (CDCl3) 3077, 2878, 1695, 1580 cm™'; HRMS m/z 243.0535 (calcd for C13HoNO,, 243.
0532).
2-(4-Methoxyphenoxy)benzaldehyde.

'H NMR (CDCl;) & 3.80 (s, 3H), 6.78 (dd, J = 8.4, 0.6 Hz, 1H), 6.90-6.92 (m, 2H), 6.91
(dd, J = 6.8, 2.5 Hz, 2H), 7.09 (tt, J = 7.3, 0.9 Hz, 1H), 7.42-7.46 (m, 1H), 7.89 (dd, J = 7.7,
1.8 Hz, 1H), 10.55 (d, J = 0.8 Hz, 1H); >*C NMR (CDCls) § 55.9, 115.4, 117.2, 121.4, 122.7,
126.3, 128.5, 136.0, 149.3, 156.8, 161.3, 189.7; IR (CDCl3) 2953, 2836, 1689 cm™'; HRMS
m/z 228.0789 (calcd for C;4H;,NO3, 228.0786).
2-(4-chlorophenoxy)benzaldehyde.

'H NMR (CDCl3) & 6.88 (d, J = 8.4 Hz, 1H), 6.98-7.01 (m, 2H), 7.19 (t, J = 7.6 Hz, 1H),
7.32-7.35 (m, 2H), 7.50-7.55 (m, 1H), 7.92 (dd, J = 7.8, 1.7 Hz, 1H), 10.47 (s, 1H); *C NMR
(CDCl3) 6 118.7, 120.8, 124.0, 127.2, 128.9, 129.7, 130.2, 136.1, 155.3, 159.7, 189.2; IR
(CDCl3) 3073, 2856, 1691 cm™'; HRMS m/z 232.0294 (calcd for C13HyClO,, 232.0291).
2-(4-i-Propylphenoxy)benzaldehyde.

'H NMR (CDCl3) & 1.27 (d, J = 7.0 Hz, 6H), 2.88-2.99 (m, 1H), 6.88 (d, J = 8.3 Hz, 1H),
6.99-7.02 (m, 2H), 7.14 (t, J = 7.5 Hz, 1H), 7.24 (d, J = 8.6 Hz, 2H), 7.46-7.50 (m, 1H), 7.93
(dd, J = 7.8, 1.8 Hz, 1H), 10.54 (s, 1H); °C NMR (CDCls) & 24.4, 33.8, 118.3, 119.7, 123.2,
126.9, 128.2, 128.5, 135.9, 145.3, 154.3, 160.7, 189.6; IR (CDCl3) 2960, 2869, 1690 cm;

HRMS m/z 238.0997 (calcd for Ci6H;40,, 238.0994).
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2-(4-Phenylphenoxy)benzaldehyde.

'H NMR (CDCls) § 7.00 (dd, J = 8.3, 0.6 Hz, 1H), 7.15-7.18 (m, 2H), 7.21-7.25 (m, 1H),
7.37-7.41 (m, 1H), 7.46-7.50 (m, 2H), 7.53-7.57 (m, 1H), 7.60-7.66 (m, 4H), 7.99-8.02 (m,
1H), 10.59 (d, J = 0.8 Hz, 1H); *C NMR (CDCl3) § 118.9, 119.9, 123.8, 127.2, 127.2, 127.6,
128.8, 129.0, 129.2, 136.1, 137.7, 140.4, 156.2, 160.1, 189.5; IR (CDCl3) 3046, 3032, 1689
cm™'; HRMS m/z 274.0999 (caled for C19H 405, 274.0994).
2-(4-t-Butylphenoxy)benzaldehyde.

'H NMR (CDCl;) & 1.35 (s, 9H), 6.89-6.91 (m, 1H), 6.98-7.02 (m, 2H), 7.14 (t, J = 7.5 Hz,
1H), 7.39-7.50 (m, 3H), 7.93 (dd, J = 7.8, 1.7 Hz, 1H), 10.54 (d, J = 0.7 Hz, 1H); °*C NMR
(CDCl3) & 31.8, 34.7, 118.4, 119.3, 123.2, 126.9, 127.2, 128.5, 136.0, 147.6, 154.0, 160.6,
189.6; IR (CDCl3) 3038, 2962, 1868, 1691 cm™; HRMS m/z 254.1307 (caled for Ci7H,;30s,
254.1307).

Methyl 4-(2-formylphenoxy)benzoate.

'H NMR (CDCl3) & 3.84 (s, 3H), 6.94-7.01 (m, 3H), 7.20-7.24 (m, 1H), 7.50-7.55 (m, 1H),
7.88-8.00 (m, 3H), 10.33 (s, 1H); °C NMR (CDCls) § 52.3, 118.1, 120.2, 124.9, 125.8,
127.8, 129.0, 132.1, 136.1, 158.4, 161.1, 166.4, 188.8; IR (CDCls) 3075, 2999, 2856, 1722,
1691 cm™'; HRMS m/z 256.0740 (calcd for C;sH;,04, 256.0736).
2-(2-Methoxy-4-methylphenoxy)benzaldehyde.

'H NMR (CDCl3) § 2.38 (s, 3H), 3.78 (s, 3H), 6.68-6.83 (m, 3H), 6.95 (d, J = 7.9 Hz, 1H),
7.08 (t, J = 7.7 Hz, 1H), 7.38-7.44 (m, 1H), 7.89 (dd, J = 7.8, 1.8 Hz, 1H), 10.65 (s, 1H); "°C

NMR (CDCls) 21.6, 56.1, 114.1, 116.2, 121.8, 122.1, 122.3, 125.7, 128.2, 135.8, 136.3,
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141.6, 151.5, 161.4, 189.9; IR (CDCl3) 2937, 2857, 1691 cm™'; HRMS m/z 242.0946 (calcd
for C;sH;403, 242.0943).
2-(Phenylsulfanyl)benzaldehyde.

This compound was prepared using a literature procedure.29
2-(Methylphenylamino)benzaldehyde.

This compound was prepared using a literature procedure.3 0
II1. Experimental Procedures.

General procedure for synthesis of the biaryl-2-ylmethyleneanilines. To a solution of
biarylcarboxaldehyde (0.25 mmol) and 2-iodoaniline (0.25 mmol) in toluene (3 mL) under N,
was added anhydrous MgSO, (0.50 mmol). The reaction mixture was stirred at 100 °C until
TLC analysis indicated the disappearance of the starting aldehyde. The reaction mixture was
then filtered and the resulting solvent was evaporated under reduced pressure to afford the
crude product, which was used without further characterization.

General procedure for the palladium-catalyzed migration reaction. The appropriate
imine (0.25 mmol), Pd(OAc), (2.8 mg, 0.0125 mmol), 1,1-bis(diphenylphosphino)methane
(dppm) (4.8 mg, 0.0125 mmol), and CsO,CCMes (CsPiv) (0.117 g, 0.5 mmol) in DMF (4
mL) under Ar at 100 °C were stirred for the specified length of time. The reaction mixture
was then cooled to room temperature, diluted with diethyl ether (35 mL) and washed with
brine (30 mL). The aqueous layer was reextracted with diethyl ether (15 mL). The organic
layers were combined, dried over MgSQ,, filtered, and the solvent removed under reduced

pressure to afford the crude imine product, which was used for the hydrolysis without further

characterization.

www.manaraa.com



91

General procedure for hydrolysis of the imines. To an acetone (5 mL) solution of the
crude imine product, 1.0 N HCl (2 mL) was added. The resulting reaction mixture was
stirred until disappearance of the starting material as indicated by thin layer chromatography.
The mixture was then diluted with H,O and extracted with diethyl ether (2 x 15 mL). The
organic layers were combined, dried over MgSQ,, filtered and the solvent was removed
under reduced pressure to afford the crude fluoren-9-one, which was purified by flash
chromatography on silica gel using ethyl acetate/hexanes as the eluent.

IV. Characterization Data for Selected Compounds.
Fluoren-9-one (2a).

The spectral properties were identical to those previously reported.25
2-Methoxyfluoren-9-one (2b).

'H NMR (CDCls) & 3.82 (s, 3H), 6.94 (dd, J = 8.4, 2.8 Hz, 1H), 7.14-7.18 (m, 2H), 7.34-
7.41 (m, 3H), 7.56 (d, J = 7.6 Hz, 1H); IR (CH,Cl,) 1717 cm™'; HRMS m/z 210.0684 (calcd
for C14H 207, 210.0681).
3-Methylfluoren-9-one (2c).

'H NMR (CDCl3) § 2.42 (s, 3H), 7.08 (dq, J = 8.7, 0.6 Hz, 1H), 7.26-7.30 (m, 1H), 7.32-
7.33 (m, 1H), 7.44-7.50 (m, 2H), 7.54 (d, J = 7.5 Hz, 1H), 7.63 (dt, J = 7.4, 0.9 Hz, 1H); °C
NMR (CDCl3) 6 22.5, 120.3, 121.5, 124.4, 124.5, 129.2, 129.8, 132.1, 124.6, 124.9, 144.5,
145.0, 146.0, 193.9; IR (CDCl3) 3044, 2919, 1711 cm™; HRMS m/z 194.0734 (calcd for
Ci14H 100, 194.0732).
3-Fluorofluoren-9-one (2d).

Due to C-F coupling, the C NMR exhibited more peaks than the number of carbons

present. 'H NMR (CDCl3) § 7.12-7.17 (m, 1H), 7.24-7.28 (m, 1H), 7.31-7.33 (m, 1H), 7.44-
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7.48 (m, 3H), 7.62-7.65 (m, 1H); *C NMR (CDCl3) § 112.1, 112.3, 120.3, 120.4, 121.0,
121.2, 121.8, 121.9, 124.8, 129.0, 135.3, 140.3, 140.4, 144.1, 162.5, 165.0, 192.7; IR
(CDCl3) 3064, 2923, 1715 cm™'; HRMS m/z 198.0483 (calcd for C;3H7FO, 198.0481).
2-Methylfluoren-9-one (2e).

'H NMR (CDCl3) 8 2.33 (s, 3H), 7.19-7.24 (m, 2H), 7.33 (d, J = 7.6 Hz, 1H), 7.04-7.41 (m,
3H), 7.58 (d, J = 7.2 Hz, 1H); >C NMR (CDCls) § 21.4, 120.0, 120.2, 124.2, 125.0, 128.6,
134.3, 134.4, 134.7, 135.1, 139.3, 141.8, 144.7, 194.2. The other spectral properties were
identical to those previously reported.’

Methyl fluorenone-2-carboxylate (2f).

'H NMR (CDCl3) & 3.95 (s, 3H), 7.37 (t, J = 7.2 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.60 (d,
J = 8.0 Hz, 2H), 7.71 (d, J = 7.6 Hz, 1H), 8.21 (dd, J = 8.0, 1.6 Hz, 1H), 8.30 (s, 1H); °C
NMR (CDCl3) 8 52.6, 120.4, 121.4, 124.8, 125.6, 130.4, 131.3, 134.4, 135.0, 135.2, 136.5,
143.5, 148.6, 166.3, 192.9; IR (CDCls) 2920, 2848, 1718 cm™'; HRMS m/z 238.0634 (calcd
for Ci5H,003, 238.0630).
2-Nitrofluoren-9-one (2g).

'H NMR (CDCl3) § 7.46 (td, J = 7.6, 1.2 Hz, 1H), 7.61 (td, J = 7.6, 1.2 Hz, 1H), 7.67-7.71
(m, 2H), 7.77 (d, J = 7.2 Hz, 1H), 8.42 (dd, J = 8.0, 2.0 Hz, 1H), 8.47 (d, J = 1.6 Hz, 1H); "°C
NMR (CDCls) 6 119.8, 120.9, 122.0, 125.3, 130.1, 131.2, 135.2, 135.3, 135.7, 142.5, 149.0,
149.9, 191.1; IR (CDCl3) 3096, 1712, 1518 cm™; HRMS m/z 225.0429 (caled for C,3H;NOs,
225.0426).

Benzo[b]fluoren-11-one (2Kk).
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'H NMR (CDCl3) 7.35 (dt, J = 7.4, 0.9 Hz, 1H), 7.47 (td, J = 8.1, 1.2 Hz, 1H), 7.55 (td, J
= 8.1, 1.3 Hz, 1H), 7.56 (td, J = 7.4, 1.1 Hz, 1H), 7.72 (dt, J = 7.5, 0.8 Hz, 1H), 7.75 (dt, J =
8.2, 0.7 Hz, 1H), 7.83 (dd, J = 8.1, 0.6 Hz, 1H), 7.87 (s, 1H), 7.89 (dt, J = 8.1, 0.6 Hz, 1H),
8.17 (s, 1H); °C NMR (CDCls) 119.5, 121.4, 124.9, 126.1, 127.4, 129.2, 129.4, 129.6,
131.2, 133.2, 134.1, 135.4, 136.6, 137.4, 138.8, 145.3, 193.5; IR (CDCl3) 3043, 1699 cm;
HRMS m/z 230.0734 (calcd for C17H;00, 230.0732).
1,3-Dimethylfluoren-9-one (2j).

The spectral properties were identical to those previously reported.32
1,3-Difluorofluoren-9-one (2i).

'H NMR (CDCl3) § 6.66 (td, J = 9.2, 1.6 Hz, 1H), 7.05 (dd, J = 7.6, 1.6 Hz, 1H), 7.38 (td, J
=17.6, 1.6 Hz, 1H), 7.50-7.55 (m, 2H), 7.68 (d, J = 7.2 Hz, 1H); *C NMR (CDCl3) § 104.9,
105.2 (q), 116.7 (d), 121.0, 124.7, 130.6, 134.6, 134.9, 142.1, 148.5 (q), 158.8 (d), 161.3,
166.8 (d), 169.4 (d), 188.8; IR (CH,Cl,) 3054, 2930, 1711 cm™'; HRMS m/z 216.0390 (calcd
for Ci3HgF>0, 216.0387).
4-Chlorofluoren-9-one (2h).

'H NMR (CDCl3) § 7.24 (t, J = 7.2 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 7.41 (d, J = 8.4 Hz,
1H), 7.55 (d, J=7.6 Hz, 1H), 7.59 (d, /= 7.2 Hz, 1H), 7.71 (d, J = 7.2 Hz, 1H), 8.18 (d, J =
7.6 Hz, 1H); °C NMR (CDCl3) § 122.8, 124.3, 124.7, 129.7, 129.8, 130.2, 134.3, 135.2,
136.4, 136.6, 140.9, 143.4, 192.8; IR (CH,Cl,) 1718 cm'l; HRMS m/z 214.0192 (calcd for
Ci13H,CIO, 214.0189).

N-(Indeno[1,2-d]furan-6-ylidene)aniline (2m).
'H NMR (CDCl3) & 6.51 (d, J = 2.0 Hz, 1H), 7.15-7.25 (m, 5H), 7.29 (t, J = 7.6 Hz, 1H),

733 (d, J =2.0 Hz, 1H), 7.41 (t, J = 7.2 Hz, 2H), 7.73 (d, J = 7.2 Hz, 1H); °C NMR (CDCl5)
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0 106.2, 119.8, 121.5, 123.4, 125.6, 127.3, 128.9, 131.1, 134.8, 138.9, 141.0, 150.1, 150.5,
150.8, 152.4; HRMS m/z 245.0843 (calcd for C;7H;;NO, 245.0841).
Aniline (3).

The extent of deuterium incorporation was determined by 'H NMR spectroscopy and mass
spectral analysis. Aniline 3 obtained from the reaction illustrated in eq. 1, Scheme 4: 'H
NMR (CDCl3) 6 3.61 (s, 2H), 6.68-6.80 (m, 2.68H), 7.17 (t, J = 7.5 Hz, 2H); peak intensity
of m/z 93 is 100%, peak intensity of m/z 94 is 55%. Aniline 3 obtained from the reaction
illustrated in eq. 2, Scheme 4: "H NMR (CDCl3) § 3.61 (s, 2H), 6.68-6.80 (m, 2.63H), 7.17 (t,
J =71.5 Hz, 2H); peak intensity of m/z 93 is 100%, peak intensity of m/z 94 is 60%. Aniline
3 obtained from the reaction illustrated in eq. 3, Scheme 4: "H NMR (CDCl5) & 3.61 (s, 2H),
6.68-6.80 (m, 2.28H), 7.17 (t, J = 7.5 Hz, 2H); peak intensity of m/z 93 is 50%, peak
intensity of m/z 94 is 100%.

Xanthen-9-one (5a).

'H NMR (CDCls) & 7.37 (t, J = 6.0 Hz, 2H), 7.48 (d, J = 6.4 Hz, 2H), 7.70-7.74 (m, 2H),
8.33 (dd, J = 6.0, 1.2 Hz, 2H); *C NMR (CDCls) 118.2, 122.1, 124.1, 126.9, 135.0, 156.4,
177.4; IR (CDCls) 2914, 2874, 1654, 1456 cm™; HRMS m/z 196.0527 (calcd for C;3HgO,,
196.0524).
2-Methylxanthen-9-one (5b).

'H NMR (CDCls) & 2.45 (s, 3H), 7.32-7.52 (m, 4H), 7.66-7.72 (m, 1H), 8.10 (s, 1H), 8.32
(dd, J = 7.9, 1.6 Hz, 1H); >C NMR (CDCls) 21.1, 117.9, 119.2, 121.7, 122.0, 123.9, 126.2,
126.9, 133.9, 134.8, 136.3, 154.6, 156.4, 177.5; IR (CDCls) 3060, 2921, 2862, 1657 cm’;
HRMS m/z 210.0684 (calcd for C14H;00,, 210.0681).

2-Methoxyxanthen-9-one (5c).
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'H NMR (CDCl3) & 3.91 (s, 3H), 7.30-7.49 (m, 4H), 7.68-7.73 (m, 2H), 8.34 (dd, J = 7.9,
1.6 Hz, 1H); C NMR (CDCl3) 56.1, 106.0, 118.2, 119.6, 121.4, 122.3, 123.9, 125.1, 126.9,
134.8, 151.2, 156.2, 156.3, 177.3; IR (CDCl3) 3014, 2980, 1664 cm™'; HRMS m/z 226.0633
(calcd for Ci4H903, 226.0630).
2-(Trifluoromethyl)xanthen-9-one (5d).

'H NMR (CDCl) & 7.40-7.44 (m, 1H), 7.50-7.52 (m, 1H), 7.59 (d, J = 8.8 Hz, 1H), 7.74-
7.79 (m, 1H), 7.92 (dd, J = 8.8, 2.2 Hz, 1H), 8.33 (dd, J = 8.0, 1.6 Hz, 1H), 8.62 (d, / = 1.6
Hz, 1H); >C NMR (CDCls) 115.6, 118.3, 119.3, 121.8, 124.9, 125.0, 125.1, 127.1, 131.3,
135.7, 156.2, 176.4; IR (CDCl3) 3083, 2961, 1666 cm™'; HRMS m/z 264.0403 (calcd for
Ci4H7F30,, 264.0398).
2-Nitroxanthen-9-one (5e).

'H NMR (CDCl3) § 7.46-7.50 (m, 1H), 7.56 (dd, J = 8.5, 0.6 Hz, 1H), 7.65 (dd, J =9.2, 0.3
Hz, 1H), 7.80-7.84 (m, 1H), 8.34-8.37 (m, 1H), 8.56 (dd, J = 9.1, 2.8 Hz, 1H), 9.21-9.22 (m,
1H); *C NMR (CDCl3) 118.4, 119.9, 121.6, 121.9, 123.8, 125.5, 127.2, 129.3, 136.1, 156.1,
159.4, 175.9; IR (CDCl3) 3077, 1667, 1611 cm™; HRMS m/z 241.0379 (caled for C3H;NOy,
241.0375).
2-Chloroxanthen-9-one (5f).

'H NMR (CDCls) & 7.37-7.41 (m, 1H), 7.43-7.49 (m, 2H), 7.64 (dd, J = 8.9, 2.7 Hz, 1H),
7.72-7.76 (m, 1H), 8.27-8.32 (m, 2H); *C NMR (CDCls) 118.3, 120.0, 121.7, 122.9, 124.5,
126.2, 127.0, 129.9, 135.1, 135.4, 154.7, 156.2, 176.3; IR (CDCl3) 3079, 1662 cm™'; HRMS
m/z 230.0137 (caled for C;3H;ClO,, 230.0135).

2-i-Propylxanthen-9-one (5g).
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'H NMR (CDCl3) § 1.32 (d, J = 6.8 Hz, 6H), 2.98-3.12 (m, 1H), 7.34-7.49 (m, 3H), 7.60
(dd, J = 8.7, 2.3 Hz, 1H), 7.68-7.74 (m, 1H), 8.18 (d, J/ = 2.3 Hz, 1H), 8.35 (dd, /= 7.9, 1.7
Hz, 1H); °C NMR (CDCls) 24.2, 33.9, 118.1, 121.8, 122.0, 123.7, 123.9, 127.0, 134.0,
134.8, 144.9, 154.8, 156.4, 177.6; IR (CDCl3) 2960, 2869, 1661 cm™'; HRMS m/z 238.0997
(calcd for C16H 1405, 238.0994).
2-Phenylxanthen-9-one (5h).

'H NMR (CDCl3) & 7.37-7.41 (m, 2H), 7.46-7.52 (m, 3H), 7.56 (d, J = 8.7 Hz, 1H), 7.67-
7.76 (m, 3H), 7.96 (dd, J = 8.7, 2.4 Hz, 1H), 8.36 (dd, J = 8.0, 1.6 Hz, 1H), 8.55 (d, / =2.4
Hz, 1H); >C NMR (CDCls) 118.6, 118.7, 122.0, 122.1, 124.2, 124.8, 127.0, 127.3, 127.9,
129.2, 133.2, 133.9, 135.1, 137.3, 139.6, 155.8, 156.4, 177.4; IR (CDCls) 3062, 3034, 1661
cm’™'; HRMS m/z 272. 0842 (calcd for C19H 205, 272.0837).
2-t-Butylxanthen-9-one (5i).

'H NMR (CDCl3) & 1.40 (s, 9H), 7.35-7.39 (m, 1H), 7.43-7.49 (m, 2H), 7.67-7.73 (m, 1H),
7.79 (dd, J = 8.8, 2.6 Hz, 1H), 8.32-8.36 (m, 2H); °C NMR (CDCls) 31.6, 35.0, 117.8,
118.1, 121.3, 122.0, 122.6, 123.9, 127.0, 133.0, 134.8, 147.3, 154.5, 156.4, 177.7; IR
(CDCl3) 2963, 2869, 1661 cm™; HRMS m/z 252.1154 (calcd for Ci7H 405, 252.1150).
4-Methoxy-2-methylxanthen-9-one (5k).

'H NMR (CDCl3) & 2.44 (d, J = 0.6 Hz, 3H), 4.00 (s, 3H), 7.03 (d, J = 1.9 Hz, 1H), 7.34-
7.38 (m, 1H), 7.57-7.59 (m, 1H), 7.67-7.73 (m, 2H), 8.32-8.33 (m, 1H); ’C NMR (CDCl5)
21.7,56.6, 117.0, 117.1, 118.5, 121.9, 122.5, 124.1, 126.8, 133.7, 134.8, 144.9, 148.5, 156.1,
177.4; IR (CDCls) 2971, 2918, 1658 cm™'; HRMS m/z 240.0790 (calcd for C;sH;,03,
240.0786).

10-Methyl-10H-acridin-9-one (Sm).
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'H NMR (CDCl3) & 3.88 (s, 3H), 7.28 (t, J = 7.2 Hz, 2H), 7.50 (d, J = 8.7 Hz, 2H), 7.69-
7.73 (m, 2H), 8.55 (dd, J = 8.0, 1.2 Hz, 2H); >C NMR (CDCl3) 33.9, 115.0, 121.5, 122.7,
128.0, 134.0, 142.8, 178.3; IR (CDCl3) 2917, 2850, 1637 cm™; HRMS m/z 209.0843 (calcd

for C4H;i1NO, 209.0841).
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CHAPTER 4. SYNTHESIS OF XANTHONES, THIOXANTHONES AND
ACRIDONES BY THE COUPLING OF ARYNES AND SUBSTITUTED

BENZOATES

Based on a communication published in Organic Letters and a full paper published
in the Journal of Organic Chemistry
Jian Zhao and Richard C. Larock*
Department of Chemistry, lowa State University, Ames, 1A 50011

larock@iastate.edu

Abstract. The reaction of silylaryl triflates, CsF and ortho heteroatom-substituted benzoates
affords a general and efficient way to prepare biologically-interesting xanthones,
thioxanthones and acridones.  This chemistry presumably proceeds by a tandem
intermolecular nucleophilic coupling of the benzoate with an aryne and subsequent

intramolecular electrophilic cyclization.

Introduction

Xanthones are secondary metabolites found in higher plant families, fungi and lichens."
This class of compounds exhibits interesting pharmaceutical properties; specifically, anti-
bacterial, anti-inflammatory, anti-cancer, and anti-viral activities have been observed.” Some
xanthone-containing plants, for example, cratoxylum cochinchinense (Lour.) Blume, have
been used as traditional medicines to treat fever, coughing, diarrhea, itching, ulcers and

abdominal complaints.” Thioxanthone derivatives also exhibit interesting anti-cancer
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activities.* Xanthones are usually synthesized through the intermediacy of benzophenones or

diaryl ethers under harsh reaction conditions and/or in the presence of

R" O R®
R2 R7
RS O X O RG
R4 R5
X=0 Xanthones

X=8 Thioxanthones
X =NR Acridones

strong acids or toxic metals.” Acridones are naturally-occurring compounds exhibiting a
variety of biological activities. They are important anti-leishmanial, anti-fungal, anti-tumor
and DNA-intercalating anti-cancer drugs.6 Acridones are usually prepared by the acid-
induced ring closure of N-phenyl anthranilic acids, which are usually obtained from Ullmann
condensation of anilines with ortho halogen-substituted benzoic acids. However, harsh
reaction conditions and tedious workup procedures are generally required.” An efficient and
general synthesis of each of these heterocycles is thus highly desirable.

Benzyne, a highly reactive intermediate, was first proposed by Wittig in 1942, and the
structure was confirmed by Roberts in 1956 using "*C isotope labeling.” Since then, many
methods have been developed to generate benzynes, for example, the base-promoted
elimination of hydrogen halide from aryl halides,'® the elimination of o-dihaloaromatics with
lithium amalgam or magnesium,'' or the recently reported decomposition of 2-magnesiated
aryl sulfonates.'”” In 1983, Kobayashi first reported a novel way to generate arynes from
silylaryl triflate precursors in the presence of CsF."? Later, nucleophiles bearing neighboring

> and f-keto esters'®

electrophiles, such as ureals,14 trifluoroacetanilides and sulfinamides,1
have been shown to react with these aryne precursors to afford the C-N bond or C-C bond

insertion products (Scheme 1). These nucleophiles first undergo intermolecular nucleophilic
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attack on the aryne. Subsequent intramolecular electrophilic cyclization, followed by
fragmentation, affords the final insertion product.

Scheme 1. Aryne Insertion Reactions.

Q Q Q@R
XR XR X
. O—CO—~GI
Nu Nu Nu
X=C,S Fﬁ
/X
O/
—_—
Nu

Recently, we communicated a novel annulation reaction utilizing readily accessible
salicylates and silylaryl triflates plus CsF, which affords an efficient one-step synthesis of
biologically-interesting xanthones and thioxanthones (eq. 1)."” This chemistry presumably
proceeds by a tandem intermolecular nucleophilic coupling of the benzoate and aryne, and
subsequent intramolecular electrophilic cyclization. A fragmentation step, which is
inevitable in the insertion examples, is not involved in this annulation process, because the
intermediate obtained from the cyclization is a stable 6-membered ring system. Herein, we
provide a full account of this efficient synthesis of xanthones and thioxanthones, plus, we
also wish to report an extension of this coupling-cyclization strategy to the synthesis of

biologically-interesting acridones.

_~_COR® TMS._~
R1—\ | + I}RZ _CsF R’
XH TfO

X=0,8S

Results and Discussion
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Optimization Studies. The reaction of methyl salicylate (1a) and the commercially
available aryne precursor o-(trimethylsilyl)phenyl triflate (2a) was first conducted in the
presence of 4 equiv of CsF in 5 mL of MeCN. After 12 h reaction at room temperature, an
80% combined yield of methyl 2-phenoxybenzoate (3a) and xanthone (4a) was obtained in a
40:60 ratio (Table 1, entry 1). Presumably, this reaction proceeds through the key
intermediate B generated by nucleophilic coupling of the aryne and the aryloxide A (Scheme
2). The carbanion B can either undergo H abstraction to afford benzoate 3a or intramolecular
electrophilic cyclization to generate the xanthone (4a). The major problem here is the proton
abstraction process, which could be suppressed by adjusting the reaction conditions, for
example, using different solvents and concentrations. Thus,

Table 1. Optimization Studies.

entry fluoride source solvent  temp (°C)  time (h) % yield (3a:4a)”
1 4 CsF MeCN  rt 12 80 (40:60)
2 4 CsF acetone rt 4 75 (38:62)
3 4 CsF CH,Cl, rt 24 trace

4 4 CsF THF rt 24 20 (5:95)
5 4 CsF toluene 100 48 trace

6 4 CsF MeNO, rt 24 -

7 4 CsF THF 65 24 82 (8:92)
8 4 CsF THF 90 12 80 (14:86)
9 4 CsF THF 50 24 30 (6:94)
10 4 CsF DME 65 24 70 (25:75)
11 4 TBAF THF 65 3 60 (83:17)
12 2 CsF THF 65 24 65 (8:92)

All reactions were conducted on a 0.25 mmol scale in 5 mL of solvent (sealed vial).
The ratio of methyl salicylate to aryne precursor is 1 to 1.1. The ratio of 3a to 4a in
parentheses has been determined by GC-MS analysis.

we next conducted the coupling-cyclization reaction in acetone, and a 75% yield of diaryl

ether 3a and xanthone (4a) was obtained in a 38:62 ratio (entry 2), which suggests that a less
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polar solvent should be examined. We then performed the reaction in CH,Cl,. However,
only a trace of the xanthone (4a) was observed by GC-MS analysis after 24 h (entry 3).
When THF was used as the solvent at room temperature, after 24 h reaction, a 20% yield of
products 3a and 4a was obtained, and a lot of the starting materials 1a and 2a was observed
by GC-MS analysis. However, the ratio of 3a to 4a was 5:95, suggesting that proton
abstraction has been almost completely suppressed (entry 4). When this reaction was
conducted in toluene, only a trace of the product was evident by GC-MS analysis (entry 5).
MeNO, also turned out to be an unsuitable solvent for this reaction (entry 6). At this point,
THF seemed to be the best solvent, at least as far as the reaction selectivity was concerned.
The same reaction was then carried out at 65 °C in THF for 24 h. A 75% yield of xanthone
(4a) was isolated by flash chromatography and GC-MS analysis indicated only a trace of the

diaryl ether 3a was obtained (entry 7).

@ @? ‘fﬁ‘
QVOTf OPh

CsOMe\

Scheme 2

@tf::“ ”
@ S

Further investigation indicated that a reaction temperature of 90 °C or 50 °C reduces the

amount of xanthone product (entries 8 and 9). When DME was used as the solvent, the
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reaction afforded only a 70% yield of two isomers formed in a 25:75 ratio (entry 10). The
effect of the fluoride source has also been examined in this process.  When
tetrabutylammonium fluoride (TBAF) was used as the fluoride source, the reaction proceeded
much faster. After 3 h, all of the starting materials were consumed and the proton abstraction
product 3a predominated (entry 11). A 65% yield of an 8:92 ratio of 3a and 4a was obtained
when this reaction was carried out in the presence of 2 equiv of CsF (entry 12). In
conclusion, the “optimal” reaction conditions for this one-step synthesis of xanthone utilize 4
equiv of CsF in THF solvent at 65 °C for 24 h (entry 7).

Synthesis of Xanthones. Employing our “optimal” reaction conditions, we have
investigated the reaction scope and limitations of this process. These results are summarized
in Table 2. We first examined the effect of a methoxy substituent on the salicylate ring to
determine which position on the salicylate ring affords the best yield of xanthone. Thus,
salicylates 1b, 1¢, 1d and 1e were employed, and 35-69% yields of substituted xanthones 4b-
4e were obtained (entries 2-5). Having an electron-donating methoxy group in the 5 position
of the salicylate ring gave the highest yield (entry 4). The yields of xanthones from the 3- and
4-methoxy starting materials were only slightly lower, but the 6-methoxy isomer gave a much
lower yield. When methyl 5-acetylsalicylate (1f) with an electron-withdrawing group in the
5 position was used as the starting material, a 58% yield of xanthone 4f was isolated by flash
chromatography (entry 6). On the other hand, the reaction of methyl 5-fluorosalicylate (1g)
and aryne precursor 2a affords an 83% yield of xanthone 4g (entry 7). The reaction of methyl
5- bromosalicylate (1h) with aryne 2a affords a 75% yield of the product 4h (entry 8). The
phenyl- and methyl-substituted salicylates 1i and 1j afforded 64% and 71% yields of the

corresponding xanthone products respectively (entries 9 and 10). When methyl 5-
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Table 2. Synthesis of Xanthones."

entry salicylate aryne product(s) % yield

5 A~ COMe %

x{j[ 2

4 5 2>0H X_\ 5

X
1 H la 2a 4a 75
2 3-OMe 1b 2a 4b 59
3 4-OMe 1c 2a 4c 62°
4 5-OMe 1d 2a 4d 69
5 6-OMe le 2a 4e 35
6 5-COMe 1f 2a af 58
7 5-F 1g 2a 4g 83
8 5-Br 1h 2a 4h 75
9 5-Ph 1i 2a 4i 64
10 5-Me 1j 2a 4j 71

[S—
[S—

(0]
HO. CO,Me
T@[ Ik 22 © O O 4k 52
OH o
CO,Ph 0
12 @[ 1 2a O O 4a 81
OH o
COLH
13 (:[ Im 2a 4a 0
OH

14 COZMe 1n 2a 41 73
e
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entry  salicylate aryne product(s) % yield
CO,Me Q
15 lo 2a 4m 46
OH o
Ng_-COzMe N 0
16 E/\[ 1p  2a B 4n 0
= OH =
O
CO,Me O OMe
17 @[ la  2b de 62"
OH 0
(0]
18 la 2 OMe 40 57°
(0] OMe
(0]
19 la 2d Me 4p 51°
(6) Me
O
CO™
20 la 2 O o O 4j 59" (1:D)
O
t
O Me
O
21 1a 2f 4r 45°

(9
{9
U

*All reactions were conducted on a 0.25 mmol scale in the presence of 4 equiv of CsF
and 1.1 equiv of silylaryl triflate in 5 mL of THF at 65 °C for 24 h (sealed vial) unless
otherwise stated. °The reaction was conducted in 5 mL of THF at 90 °C. “The yield has

been determined by GC analysis due to the impurities in the product.

hydroxysalicylate (1k) is allowed to react with 2.5 equiv of aryne precursor 2a, the O-arylated

xanthone product 4k was isolated in a 52% yield (entry 11). We have previously reported the
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facile arylation of phenols by these same aryne precursors.18 From these results with 5-
substituted salicylates, there is no obvious correlation between the electronic properties of the
substituent and the yield. Phenyl salicylate (11) has been employed in this reaction and an
81% yield of xanthone 4a was obtained (entry 12). Assuming that 2-hydroxybenzoic acid
would first form the corresponding phenyl ester 11,"® which should then afford the
corresponding xanthone (4a), we treated 2 equiv of benzyne precursor 2a and 2-
hydroxybenzoic acid (1m) in the usual fashion. Unfortunately, none of the desired product
was observed for reasons we do not really understand at this time (entry 13). Interestingly,
the cross coupling of methyl 1-hydroxy-2-naphthoate (1n) with silylaryl triflate 2a affords a
73% vyield of xanthone 41, but the reaction using methyl 2-hydroxy-3-naphthoate (10) only
generates a 48% yield of the product 4m (entries 14 and 15). This latter reaction produced
several side products which have not been identified. The annulation of 1p, which contains a
pyridine ring, afforded none of the xanthone product under our “optimal” conditions (entry
16). Again, we are uncertain why this latter reaction failed.
Scheme 3. Aryne Precursors.
™S ™S M s OMe TMS Me TMS:©MeTMSj©E>
Tf0:© Tf0:© Tf0:©:OMe TfO Me TfO TfO
2a 2b 2c 2d 2e 2f

After investigating the effect of varying the salicylate structure, we examined the reaction
efficiency using different aryne precursors (Scheme 3). A 62% yield of a single isomeric
methoxyxanthone 4e was obtained from the reaction of methyl salicylate 1la with aryne
precursor 2b after 24 h at 90 °C (entry 17). Note that a somewhat higher temperature was

required to get a good yield. The regioselectivity of this reaction is due to the steric and
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electronic effects in the step involving nucleophilic attack on the aryne, which has been seen
in several previous reactions involving this alryne.18 When the dimethoxysilylaryl triflate 2¢
was employed, a 57% yield of xanthone 40 was isolated (entry 18). Again a higher
temperature was required. The reaction of aryne precursor 2d with methyl salicylate (1a)
afforded a 51% yield of xanthone 4p (entry 19). When aryne precursor 2e was employed, a
59% yield of two isomeric xanthones 4j and 4q was obtained in a 1:1 ratio (entry 20). This is
consistent with the intermediacy of an unsymmetrical methyl-substituted benzyne. Aryne
precursor 2f afforded a 45% yield of a single xanthone product 4r (entry 21).

One of the major advantages of this methodology is that halogen atoms can be tolerated,
which provides access to more structurally diverse xanthone skeletons via metal-catalyzed
cross-coupling reactions. As illustrated in Scheme 4, the halogen-substituted xanthone
product 4h can be further modified by Heck'® and Suzuki® reactions, affording interesting
xanthone derivatives 5a and 5b for further biological examination.

Scheme 4. Diversification of Halogen-substituted Xanthones.

o (@]

= o EtO,C

~ e T —— L
B(OH O O O

50%
5a 48% 4h Sb

(i) 5% Pd(PPh3)4, 1 NapCOg, 1:4 MeOH/Toluene, 80 °C, 12 h; (ii) 5% Pd(OAc),, 2 NaHCO3, 1 TBAC,
DMF, 100 °C, 24 h.

Synthesis of Thioxanthones. Biologically-interesting thioxanthone derivatives have also
been prepared by this same methodology. All of the results are summarized in Table 3.
Methyl thiosalicylate (6a) and 1.1 equiv of benzyne precursor 2a were treated with 4 equiv of
CsF in 5 mL of THF at 65 °C, after 24 h, a 35% yield of thioxanthone (7a) was isolated. The

lower yield in this example is presumably due to oxidative homocoupling of the thiols, since
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thiols are known to afford disulfides in the presence of CsF on a celite solid support in air.”!
In order to suppress this undesired homocoupling process, the same reaction was repeated
under an Ar atmosphere, and a 55% yield of thioxanthone (7a) was obtained. Further
optimization indicated that a 64% yield of product 7a could be obtained under more dilute
conditions, although a small amount of disulfide product and S-arylation product were
present (Table 3, entry 1). The reaction of this thiol with benzyne precursor 2b afforded a
45% yield of the desired thioxanthone 7b (entry 2). When 2d was employed as the aryne

Table 3. Synthesis of Thioxanthones.”

entry thiosalicylate aryne product(s) % yield
COzMe 0
1 @[ 6a  2a CL0 7a 64
SH
S
O OMe
2 6a  2b 7b 45
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e 40°
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*All reactions were conducted on a 0.25 mmol scale in the presence of 4 equiv of CsF
and 1.1 equiv of silylaryl triflate in 10 mL of THF at 65 °C under Ar. "The reaction was
conducted in 10 mL of THF at 90 °C under Ar (sealed tube). “The ratio in parentheses has
been determined by 'H NMR spectroscopy.

precursor in this reaction, a 40% yield of the product 7¢ was isolated (entry 3). The reaction

5 6a 2f 7t 62°

W
O

of 2e afforded a 56% yield of two regioisomers 7d and 7e in a 1:1 ratio (entry 4). Finally,
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aryne precursor 2f was allowed to react with thiosalicylate 6a, and a 62% yield of
thioxanthone 7f was isolated by flash chromatography (entry 5).

Synthesis of Acridones. After we had a general and efficient synthesis of xanthones and
thioxanthones in hand, we attempted to expand this methodology to the synthesis of
acridones, a well-known class of anti-fungal, anti-tumor and anti-cancer compounds.6
Acridones have been prepared by the coupling of 3-halogeno-4-methoxybenzynes generated
from 5-(3-halogeno-4-methoxyphenyl)thianthrenium perchlorates and LDA in THF at reflux
with 2-aminobenzoate.”> However, this protocol employs a fairly unusual aryne precursor,
and it also suffers from the moisture-sensitive reagents and conditions. Methyl 2-
aminobenzoate (8a) was first prepared and allowed to react with aryne precursor 2a, and a
50% yield of the acridone product 9a was obtained (Table 4, entry 1). Methyl 2-(N-
methylamino)benzoate (8b) was then allowed to react with aryne precursor 2a. After 1 day
of reaction, a 72% yield of acridone 9b was isolated by flash chromatography(entry 2).

However, the reaction employing methyl 2-(N-phenylamino)benzoate (8¢) was very sluggish;

after 2 days of reaction, only a 7% yield of the desired product 9¢ was observed by GC-MS
analysis. The low yield is presumably due to the steric hindrance introduced by the presence
of the phenyl substituent (entry 3). Interestingly, the reaction of methyl 2-(N,N-
dimethylamino)benzoate (8d) affords a 65% yield of acridone product 9b, which indicates
that even tertiary amines can be successfully employed in this transformation (entry 4).
Apparently the anticipated ammonium-containing product undergoes demethylation under the
reaction conditions. Several halogen-substituted benzoates (8e-8g) have also been prepared
from the corresponding acids and employed in this process (entries 5-7). Yields of 48-71%

of the corresponding acridone products (9d-9f) have been obtained. We have not employed
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entry benzoate aryne  product(s) % yield
0
- _COpMe _
X | x— |
4 5 2 NR‘IRZ N ’I\l
R2
Rl R X
1 H H H 8a 2a 9a 50
2 H Me H 8b 2a 9b 72
3 H Ph H 8¢ 2a 9¢ 7
4 Me Me H 8d 2a 9b 65
5 H Me 4-F 8e 2a 9d 48
6 H Me 5-F 8f 2a 9¢ 71
7 H Me 5-Br 8g 2a of 61
O OMe
8 H Me H 8b 2b 9g  trace’
Me
o)
Me
9 H Me H 8b 2d O O 9h 27°¢
N Me
Me
0
Me
10 H Me H 8b 2e O \ O 9i
Me
51°¢
Q (1:1)
L
Me
0
11 H Me H 8b 2f 9k 35°¢

Me

“All reactions were conducted on a 0.25 mmol scale in the presence of 4 equiv of CsF
and 1.1 equiv of the silylaryl triflate in 10 mL of THF at 65 °C. "The yield was
determined by GC-MS analysis. “The reaction was conducted in 10 mL of THF at 90
°C (sealed tube). The ratio in parentheses has been determined by '"H NMR

spectroscopy.
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protecting groups on nitrogen since that could well lead to C-N insertion products.”’15

At this point, we examined the effect of the aryne structure on the yield of acridone. When
silylaryl triflate 2b was employed with benzoate 8b, the reaction was very sluggish and only a
trace amount of the desired acridone product 9g was observed by GC-MS analysis (entry 8).
Aryne precursor 2d afforded only a 27% yield of the product 9h and this reaction had to be
run at 90 °C (entry 9). The reaction of aryne precursor 2e with benzoate 8a afforded a 51%
yield of two isomeric acridones, 9i and 9j, in a 1:1 ratio (entry 10). A 35% yield of acridone
product 9k was obtained when aryne precursor 2f was employed (entry 11). These last two
reactions also had to be run at 90 °C.

A plausible mechanism for these aminobenzoate reactions is proposed in Scheme 4. The
benzoate bearing an amino group presumably first undergoes nucleophilic attack on the aryne
generated in situ from the silylaryl triflate. When R is a proton, the actual nucleophile
involved could be either the neutral amine or the anionic intermediate D generated by

Scheme 4. Plausible Mechanism for the Acridone Synthesis.

CO,Me
™ @( @
NMe
| D \ @l R Me F
COyMe O OMe
A0 o .53.0 -
NRMe

“o¥-cdpato”

1f Me
hydrogen abstraction from the amine by CsF. However, when the tertiary amine 8d is

employed, although no proton is available for abstraction, this reaction still works well,
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suggesting that the neutral amine itself is nucleophilic enough for this transformation.
Therefore, the reaction mechanism which proceeds via intermediates F and G seems more
likely, although we cannot rule out possible anionic nucleophilic attack on the aryne, which
proceeds via intermediates D and E. Subsequent intramolecular cyclization should afford the

final acridone products.

Conclusions

A general one-pot synthesis of biologically-interesting xanthones, thioxanthones and
acridones has been developed. This chemistry presumably proceeds by a tandem
intermolecular nucleophilic coupling of the substituted benzoates and arynes and subsequent
intramolecular electrophilic cyclization. The mild reaction conditions and generally high
reaction efficiency provide advantages over previously reported multi-step procedures. In
generally, this strategy tolerates both electron-donating and electron-withdrawing
functionalities on the benzoate ring, but substituents on the aryne ring appear to lower the

yields of the desired products.

Experimental Section
I. General Procedures.

All 'H and *C NMR spectra were collected in CDCl; unless noted otherwise. Thin layer
chromatography was performed using 60-mesh silica gel plates, and visualization was
affected using wavelength UV light (254 nm) and a basic KMnQO, solution. All high
resolution mass spectra were recorded using EIL

All reagents were used directly as obtained commercially unless otherwise noted. MeCN

was dried by CaH,, and THF solvent was dried over Na/benzophenone. The salicylates 1a-d,
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1f, 1g and 1j-o, the salicylic acids used to prepare salicylates le, 1h, 1i and 1p, the
thiosalicylate 6a, the anthranilic acids used to prepare amino esters 8a-g, and the aryne
precursor 2a and CsF are commercially available. Aryne precursors 2b-f were prepared
according to literature procedures.15

I1. Non-commercial compounds.

Non-commercial methyl salicylates were prepared from the corresponding salicylic acids
by the following procedure. The salicylic acid (5.0 mmol) was dissolved in 50 mL of
methanol, and 1 mL of concentrated H,SO, was cautiously added to the mixture. The
reaction mixture was refluxed for 24 h.

A~ COH |50, _~_CO:Me
X, o €L,
Methyl 6-methoxysalicylate (1e).

'H NMR (CDCl3) & 3.83 (s, 3H), 3.92 (s, 3H), 6.38 (d, J = 8.3 Hz, 1H), 6.57 (dd, J = 8.3,
0.6 Hz, 1H), 7.30 (t, J = 8.3 Hz, 1H), 11.50 (s, 1H); °C NMR (CDCl;) § 52.7, 56.4, 102.4,
103.3, 110.3, 135.3, 161.0, 163.8, 171.8; IR (CDCls) 3250, 3010, 2956, 1654 cm™; HRMS
m/z 182.0581 (calcd for CoH; 004, 182.0579).

Methyl 5-bromosalicylate (1h).

'H NMR (CDCl3) & 3.95 (s, 3H), 6.87 (d, J = 8.9 Hz, 1H), 7.52 (dd, J = 8.9, 2.5 Hz, 1H),
7.94 (d, J = 2.5 Hz, 1H), 10.70 (s, 1H); °C NMR (CDCls) 8 52.9, 110.0, 114.0, 119.8, 132.4,
138.6, 160.8, 169.7; IR (CDCls) 3177, 2954, 2854, 1678 cm™'; HRMS m/z 229.9582 (calcd
for CgH;BrOs3, 229.9579).

Methyl 5-phenylsalicylate (1i).
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'H NMR (CDCls) & 3.98 (s, 3H), 7.07 (d, J = 8.6 Hz, 1H), 7.32-7.36 (m, 1H), 7.42-7.46 (m,
2H), 7.55-7.57 (m, 2H), 7.71 (dd, J = 8.7, 2.4 Hz, 1H), 8.08 (d, J = 2.4 Hz, 1H), 10.80 (s,
1H); >C NMR (CDCl3) & 52.7, 112.7, 118.3, 126.9, 127.3, 128.4, 129.1, 132.7, 134.7, 140.1,
161.2, 170.8; IR (CDCl3) 3220, 2960, 1675 cm™'; HRMS m/z 228.0784 (calcd for C4H;,03,
228.0786).

Methyl 3-hydroxypyridine-2-carboxylate (1p).

'H NMR (CDCls) & 3.83 (s, 3H), 7.12-7.22 (m, 2H), 8.04 (s, 1H), 10.41 (s, 1H); °C NMR
(CDCl3) & 53.2, 126.2, 129.6, 130.0, 141.4, 158.7, 169.8; IR (CDCl3) 3106, 2956, 1678 cm™";
HRMS m/z 153.0428 (calcd for C;H7NOs3, 153.0426).

The amino esters were prepared from the corresponding anthranilic acids by the following
procedure. Anthranilic acid (5.0 mmol), K,CO3; (10.0 mmol), and Mel (20.0 mmol) were
added to 50 mL of acetone and refluxed for 3 h. Esters 8a and 8b were separated by flash
chromatography, and 8b was converted to 8d by treating it with NaH and Mel in DMF for 24
h.

©iCOZH 2?@(?3 ©:002Me ©:002Me @COZMe
NH; a?ifﬁﬁie NHz 8a NHMe SbMel i o
Methyl 2-aminobenzoate (8a).

'H NMR (CDCl5) & 3.84 (s, 3H), 5.78 (s, 2H), 6.61-6.64 (m, 2H), 7.22-7.26 (m, 1H), 7.84-
7.87 (m, 1H); *C NMR (CDCls) & 51.8, 110.8, 116.4, 116.9, 131.4, 134.3, 150.8, 168.8; IR
(CDCl3) 3481, 3372, 2950, 2903, 1695 cm™; HRMS m/z 151.0635 (calcd for CgHoNO,,
151.0633).

Methyl 2-(N-methylamino)benzoate (8b).
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'H NMR (CDCl3) § 2.91 (d, J = 5.0 Hz, 3H), 3.8 (s, 3H), 6.57-6.68 (m, 2H), 7.36-7.42 (m,
1H), 7.67 (s, 1H), 7.92 (dd, J = 7.9, 1.6 Hz, 1H); *C NMR (CDCl3) & 29.8, 51.6, 110.1,
110.9, 114.6, 131.8, 134.9, 152.2, 169.3; IR (CDCl3) 3368, 2990, 2871, 1685 cm™'; HRMS
m/z 165.0792 (calcd for CoH;;NO,, 165.0790).

Methyl 2-(N-phenylamino)benzoate (8c).

'H NMR (CDCl3) & 3.9 (s, 3H), 6.77-6.81 (m, 1H), 7.15 (t, J = 5.1 Hz, 1H), 7.31-7.42 (m,
6H), 8.02-8.05 (m, 1H), 9.60 (s, 1H); *C NMR (CDCls) & 52.1, 112.2, 114.3, 117.4, 122.7,
123.8, 129.7, 131.9, 134.4, 141.0, 148.2, 169.2; IR (CDCl3) 3365, 2965, 1667 cm™'; HRMS
m/z 227.0966 (calcd for Ci4H;3NO,, 227.09463).

Methyl 2-(N,N-dimethylamino)benzoate (8d).

'H NMR (CDCl) § 2.79 (s, 6H), 3.84 (s, 3H), 6.79 (t, J = 7.7 Hz, 1H), 6.88 (d, J = 8.3 Hz,
1H), 7.29 (m, 1H), 7.62 (dd, J = 7.8, 1.5 Hz, 1H); *C NMR (CDCl3) & 43.8, 52.2, 116.8,
118.8, 121.1, 131.8, 132.4, 152.5, 169.1; IR (CDCls) 2986, 2948, 1717 cm™'; HRMS m/z
179.0949 (caled for C1oH 3NO,, 179.0946).

Methyl 4-fluoro-2-(N-methylamino)benzoate (8e).

'H NMR (CDCl3) & 2.86 (s, 3H), 3.82 (s, 3H), 6.24 (m, 2H), 7.8 (s, 1H), 7.87 (d, J = 8.8 Hz,
1 H); >C NMR (CDCl3) & 29.8, 51.7, 97.0, 97.2, 102.1, 102.4, 106.7, 134.3, 134.4, 154.3,
154.4, 166.3, 168.5, 168.8; IR (CDCl3) 3373, 2994, 2951, 1689 cm™; HRMS m/z 183.0698
(calcd for CoH(FNO,, 183.0696).

Methyl 5-fluoro-2-(N-methylamino)benzoate (8f).
'H NMR (CDCls) § 2.85 (s, 3H), 3.82 (s, 3H), 6.52 (dd, J = 9.2, 4.4 Hz, 1H), 7.07-7.12 (m,

1H), 7.41 (s, 1H), 7.55 (dd, J = 9.7, 3.1 Hz, 1H); °*C NMR (CDCl3) & 30.0, 51.8, 109.6,

109.7, 111.8, 111.9, 115.6, 116.7, 122.3, 122.5, 149.0, 151.9, 154.2, 168.3, 168.4; IR
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(CDCl3) 3392, 2957, 2915, 1684 cm™; HRMS m/z 183.0698 (caled for CoHoFNO,,
183.0696).
Methyl 5-bromo-2-(N-methylamino)benzoate (8g).

'H NMR (CDCls)  2.87 (d, J = 4.2 Hz, 3H), 3.83 (s, 1H), 6.52 (d, J = 9.0 Hz, 1H), 7.40 (dd,
J=9.0, 2.5 Hz, 1H), 7.63 (s, 1H), 7.97 (d, J = 2.5 Hz, 1H); °C NMR (CDCl3) & 29.9, 51.9,
105.8, 111.4, 112.8, 133.9, 137.4, 151.0, 168.2; IR (CDCls) 3377, 2948, 2909, 1689 cm™;
HRMS m/z 242.9898 (calcd for CoH;(BrNO,, 242.9895).

II1. Experimental Procedures.

Representative procedure for the coupling-cyclization of arynes and salicylates. CsF
(1.0 mmol), the salicylate (0.25 mmol), and the silylaryl triflate (0.28 mmol) in 5 mL of
anhydrous THF were stirred at 65 or 90 °C for 24 h. The reaction mixture was allowed to
cool to room temperature, diluted with diethyl ether (25 mL) and washed with brine (25 mL).
The aqueous layer was re-extracted with diethyl ether (2 x 25 mL). The organic layers were
combined, dried (MgSQO,), filtered, and the solvent was removed under reduced pressure.
The residue was purified by flash chromatography on silica gel.

Representative procedure for the coupling-cyclization of arynes and thiosalicylates.
CsF (1.0 mmol), the thiosalicylate (0.25 mmol) and the silylaryl triflate (0.28 mmol) were
added to 10 mL of anhydrous THF, and the reaction vial was flushed with Ar. The whole
reaction solution was then stirred at 65 or 90 °C for 24 h and worked up as described
previously.

Representative procedure for the coupling-cyclization of arynes and 2-

aminobenzoates. CsF (1.0 mmol), the 2-aminobenzoate (0.25 mmol), and the silylaryl
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triflate (0.28 mmol) in 10 mL of anhydrous THF were stirred at 65 or 90 °C for 24 h and
worked up as described previously.
9H-Xanthen-9-one (4a).

'H NMR (CDCl3) & 7.37 (t, J = 6.0 Hz, 2H), 7.48 (d, J = 6.4 Hz, 2H), 7.70-7.74 (m, 2H),
8.33 (dd, J = 6.0, 1.2 Hz, 2H); >C NMR (CDCl3) & 118.2, 122.1, 124.1, 126.9, 135.0, 156.4,
177.4; IR (CDCl3) 2914, 2874, 1654, 1456 cm™'; HRMS m/z 196.0527 (caled for Ci3HgOs,
196.0524).
4-Methoxy-9H-xanthen-9-one (4b).

'H NMR (CDCl3) & 4.03 (s, 3H), 7.22-7.31 (m, 2H), 7.39 (t, J = 7.5 Hz, 1H), 7.60 (d, J =
8.4 Hz, 1H), 7.71-7.75 (m, 1H), 7.90 (dd, J = 7.9, 1.5 Hz, 1H), 8.33 (d, J = 7.9 Hz, 1H); "°C
NMR (CDCl3) 8 56.7, 115.5, 117.8, 118.5, 121.9, 122.9, 123.7, 124.3, 126.9, 135.0, 146.7,
148.8, 156.2, 177.4; IR (CDCl3) 3026, 2951, 2849, 1660 cm™'; HRMS m/z 226.0632 (calcd
for Ci4H,003, 226.0630).
3-Methoxy-9H-xanthen-9-one (4c).

'H NMR (CDCl3) & 3.92 (s, 1H), 6.86 (d, J = 2.3 Hz, 1H), 6.93 (d, J = 8.9 Hz, 1H), 7.34-
7.38 (m, 1H), 7.43 (d, J = 8.3 Hz, 1H), 7.66-7.70 (m, 1H), 8.27 (d, / = 8.9 Hz, 1H), 8.31 (d, J
= 7.9 Hz, 1H); °C NMR (CDCl3) & 56.1, 100.4, 113.5, 116.0, 117.9, 122.2, 124.1, 126.9,
128.5, 134.5, 156.4, 158.3, 165.3, 176.5; IR (CDCls) 3068, 2950, 2843, 1650 cm™'; HRMS
m/z 226.0634 (calcd for C14H;¢03, 226.0630).
2-Methoxy-9H-xanthen-9-one (4d).

'H NMR (CDCl3) & 3.91 (s, 3H), 7.26-7.49 (m, 4H), 7.69-7.72 (m, 2H), 8.33 (dd, J = 5.9,

0.8 Hz, 1H); C NMR (CDCls) & 56.2, 106.0, 118.2, 119.6, 121.4, 122.3, 123.9, 125.1,
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126.9, 134.8, 151.2, 156.2, 156.3, 177.3; IR (CDCls) 3014, 2981, 1666, 1467 cm™'; HRMS
m/z 226.0633 (calcd for C14H003, 226.0630).
1-Methoxy-9H-xanthen-9-one (4e).

'H NMR (CDCls) & 4.00 (s, 3H), 6.77 (d, J = 8.1 Hz, 1H), 7.03 (d, J = 8.6 Hz, 1H), 7.26-
7.40 (m, 2H), 7.55-7.67 (m, 2H), 8.29 (dd, J = 8.0, 1.2 Hz, 1H); *C NMR (CDCl5) & 56.7,
105.6, 110.2, 112.8, 117.5, 123.2, 124.0, 127.0, 134.4, 135.0, 155.2, 158.4, 161.0, 176.7; IR
(CDCl3) 2971, 2946, 1666, 1474 cm™; HRMS m/z 226.0633 (calcd for C4H;03, 226.0630).
2-Acetyl-9H-xanthen-9-one (4f).

'H NMR (CDCls) & 2.71 (s, 3H), 7.42 (td, J = 5.3, 0.7 Hz, 1H), 7.51-7.56 (m, 2H), 7.76 (td,
J =62, 1.3 Hz, 1H), 8.33-8.36 (m, 2H), 8.86 (d, J = 1.6 Hz, 1H); °C NMR (CDCl;) 5 26.9,
118.4, 119.1, 121.4, 121.9, 124.9, 127.1, 128.6, 133.1, 134.1, 135.6, 156.2, 159.1, 176.9,
196.6; IR (CDCl3) 3066, 2972, 1665, 1652 cm™; HRMS m/z 238.0632 (caled for C;sH;¢0s,
238.0630).
2-Fluoro-9H-xanthen-9-one (4g).

'H NMR (CDCl3) 8 7.35-7.51 (m, 4H), 7.73 (td, J = 7.2, 1.7 Hz, 1H), 7.95 (dd, J = 8.2, 2.8
Hz, 1H), 8.30 (dd, J = 7.9, 1.7 Hz, 1H); *C NMR (CDCl3) 8 111.6 (d, J = 13.7 Hz), 118.2,
120.20 (d, J = 8.1 Hz), 121.2, 122.8 (d, J = 7.0 Hz), 123.1 (d, J = 25.3 Hz), 124.3, 126.9,
135.3, 152.5 (d, J = 1.6 Hz), 156.3, 158.9 (d, J = 245.5 Hz), 176.7 (d, J = 2.4 Hz); IR
(CDCl3) 3087, 1664, 1157 cm™; HRMS m/z 214.0433 (calcd for C13H,FO,, 214.0430).
2-Bromo-9H-xanthen-9-one (4h).

'H NMR (CDCl3) 8 7.36-7.40 (m, 2H), 7.47 (d, J = 8.4 Hz, 1H), 7.71-7.79 (m, 2H), 8.30

(dd, J = 8.0, 1.4 Hz, 1H), 8.42 (d, J = 2.5 Hz, 1H); *C NMR (CDCls) § 117.3, 118.3, 120.2,

www.manaraa.com



122

121.7, 123.3, 124.5, 127.0, 129.4, 135.4, 137.8, 155.1, 156.2, 176.2; IR (CDCl3) 3075, 2919,
1663 cm'l; HRMS m/z 273.9634 (calcd for C13H7BrO,, 273.9630).
2-Phenyl-9H-xanthen-9-one (4i).

'H NMR (CDCl3) § 7.37-7.42 (m, 2H), 7.47-7.52 (m, 3H), 7.55-7.58 (m, 1H), 7.67-7.77 (m,
3H), 7.96-7.99 (m, 1H), 8.36-8.39 (m, 1H), 8.56-8.57 (m, 1H); *C NMR (CDCl3) & 118.3,
118.7, 122.1, 124.2, 124.8, 127.0, 127.3, 127.9, 129.2, 133.9, 135.1, 137.3, 139.6, 155.8,
156.4, 177.4; IR (CDCl3) 3070, 3034, 1656 cm™; HRMS m/z 272.0842 (calcd for CjoH 20,
272.0837).
2-Methyl-9H-xanthen-9-one (4j).

'H NMR (CDCl3) § 2.46 (s, 3H), 7.34-7.40 (m, 2H), 7.47 (dd, J = 8.4, 0.5 Hz, 2H), 7.53-
7.54 (m, 1H), 7.68-7.73 (m, 1H), 8.11 (d, J = 0.9 Hz, 1H), 8.33 (dd, J = 8.0, 1.6 Hz, 1H); "°C
NMR (CDCl3) 6 21.1, 115.6, 118.0, 118.2, 121.7, 123.9, 126.2, 126.9, 133.9, 134.9, 136.3,
154.6, 156.4, 177.5; IR (CDCl3) 3061, 2918, 2862, 1657 cm™'; HRMS m/z 210.0684 (calcd
for Ci4H,00,, 210.0681).
2-Phenoxy-9H-xanthen-9-one (4k).

'H NMR (CDCl3) § 7.04-7.06 (m, 2H), 7.15 (t, J = 7.4 Hz, 1H), 7.35-7.53 (m, 6H), 7.71-
7.75 (m, 1H), 7.87 (d, J = 2.8 Hz, 1H), 8.32 (dd, J = 8.0, 1.6 Hz, 1H); °C NMR (CDCl5) &
114.4, 114.7, 118.2, 119.9, 124.1, 124.2, 126.9, 127.0, 129.7, 130.2, 130.5, 135.1, 152.3,
153.8, 156.3, 157.1, 177.0; IR (CDCl3) 3066, 2951, 2872, 1660 cm™; HRMS m/z 288.0790
(calcd for C19H 1,03, 288.0786).
7H-Benzo[c]xanthen-7-one (41).

'H NMR (CDCls) & 7.43 (t, J = 7.7 Hz, 1H), 7.64-7.77 (m, 5H), 7.88-7.92 (m, 1H), 8.25 (d,

J = 8.8 Hz, 1H), 8.39 (dd, J = 6.8, 1.5 Hz, 1H), 8.63 (m, 1H); >C NMR (CDCl3) & 117.8,
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118.3, 121.7, 122.7, 123.1, 124.2, 124.3, 124.6, 126.8, 127.1, 128.3, 129.8, 134.6, 136.7,
153.8, 156.0, 177.1; IR (CDCl3) 3061, 1654, 1439 cm™'; HRMS m/z 246.0684 (calcd for
Ci7H00,, 246.0681).

2,3-Dimethoxy-9H-xanthen-9-one (40).

'H NMR (CDCl3)  3.99 (m, 6H), 6.88 (t, J = 3.7 Hz, 1H), 7.33-7.45 (m, 2H), 7.63-7.69 (m,
2H), 8.32 (m, 1H); °C NMR (CDCl3) & 56.6, 56.7, 99.8, 105.5, 115.1, 117.9, 121.7, 124.0,
126.7, 134.2, 146.9, 152.6, 155.6, 156.2, 176.3; IR (CDCl3) 2940, 2834, 1648, 1466 cm;
HRMS m/z 256.0740 (calcd for C;5sH;204, 256.0736).
2,3-Dimethyl-9H-xanthen-9-one (4p).

'H NMR (CDCl3) & 2.35 (s, 3H), 2.38 (s, 3H), 7.23-7.45 (m, 3H), 7.68 (m, 1H), 8.04 (s,
1H), 8.32 (dd, J = 7.9, 1.5 Hz, 1H); °*C NMR (CDCl3) & 19.4, 20.8, 118.1, 118.3, 119.9,
122.1, 123.8, 126.5, 126.9, 133.3, 134.6, 145.7, 154.9, 156.4, 177.3; IR (CDCl3) 2971, 2921,
1656, 1462 cm™'; HRMS m/z 224.0840 (calcd for C;sH;,0,, 224.0837).
2-Methyl-9H-xanthen-9-one (4j) and 3-methyl-9H-xanthen-9-one (4q).

These compounds were obtained as an inseparable mixture and characterized as a mixture.
'H NMR (CDCl3) 8 2.47 (s, 3H), 2.51 (s, 3H), 7.19 (dd, J = 8.0, 0.7 Hz, 1H), 7.29 (s, 1H),
7.35-7.41 (m, 3H), 7.48 (dd, J = 8.3, 2.1 Hz, 2H), 7.53 (dd, J = 8.5, 2.0 Hz, 1H), 7.69-7.73
(m, 2H), 8.12 (d, J = 1.0 Hz, 1H), 8.22 (d, J = 8.1 Hz, 1H), 8.32-8.35 (m, 2H); °*C NMR
(CDCl3) 6 21.1, 22.3, 118.0, 118.1, 119.8, 121.7, 122.0, 122.1, 123.9, 124.0, 125.7, 126.2,
126.7, 126.9, 127.0, 133.9, 134.8, 134.9, 136.3, 146.6, 154.6, 156.3, 156.4, 156.5, 177.3,
177.5; IR (CDCl3) 3066, 2923, 1661, 1608 cm'l; HRMS m/z 210.0684 (calcd for C;4H;(0,,
210.0681).

1,2,3,5-Tetrahydrocyclopenta[b]thioxanthen-9-one (4r).
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'H NMR (CDCl3) & 2.11-2.19 (m, 2H), 2.98-3.05 (m, 4H), 7.30 (s, 1H), 7.33-7.37 (m, 1H),
7.46 (d, J = 8.2 Hz, 1H), 7.67-7.71 (m, 1H), 8.13 (s, 1H), 8.33 (dd, J = 8.0, 1.6 Hz, 1H); "°C
NMR (CDCl3) 6 26.1, 32.2, 33.7, 113.4, 115.6, 118.1, 120.5, 121.4, 123.8, 126.9, 134.6,
140.8, 153.3, 155.7, 156.3, 177.5; IR (CDCl3) 2962, 2839, 1654 cm™'; HRMS m/z 236.0841
(calcd for Ci16H120,, 236.0837).

Ethyl 3-(9-0x0-9H-xanthen-2-yl)acrylate (5a).

'H NMR (CDCl3) & 1.35 (t, J = 7.2 Hz, 3H), 4.27 (q, J = 7.2 Hz, 2H), 6.49 (d, J = 1.6 Hz,
1H), 7.39 (t, J = 7.7 Hz, 1H), 7.48 (d, J = 8.7 Hz, 2H), 7.71-7.76 (m, 2H), 7.85 (dd, J = 8.7,
2.1 Hz, 1H), 8.31 (dd, J = 8.0, 1.4 Hz, 1H), 8.43 (d, J = 2.0 Hz, 1H); °C NMR (CDCL3) &
14.6, 60.9, 118.3, 119.1, 119.4, 121.9, 122.1, 124.6, 127.0, 130.7, 133.7, 135.3, 142.9, 156.2,
157.1, 166.9, 176.9; IR (CDCl3) 3034, 2981, 1714, 1657 cm™'; HRMS m/z 294.0897 (calcd
for C;sH 404, 294.0892).
2-(Furan-3-yl)-9H-xanthen-9-one (5b).

'H NMR (CDCl3) & 6.8 (q, J = 0.9 Hz, 1H), 7.36-7.40 (m, 1H), 7.47-7.51 (m, 3H), 7.70-
7.74 (m, 1H), 7.81-7.84 (m, 2H), 8.34 (dd, J = 8.0, 1.8 Hz, 1H), 8.39 (d, J = 2.3 Hz, 1H); °C
NMR (CDCls) 6 109.0, 118.2, 118.8, 121.9, 122.1, 123.2, 124.2, 125.4, 127.0, 128.8, 132.7,
135.1, 139.0, 144.2, 155.3, 156.3, 177.3; IR (CDCl3) 3069, 2924, 1660 cm'; HRMS m/z
262.0635 (caled for C;7H 003, 262.0630).
9H-Thioxanthen-9-one (6a).

'H NMR (CDCl3) 8 7.48 (td, J = 6.7, 1.5 Hz, 2H), 7.56-7.65 (m, 4H), 8.62 (dd, J = 7.4, 0.8
Hz, 2H); *C NMR (CDCls) § 126.2, 126.5, 129.5, 130.1, 132.5, 137.5, 180.2; IR (CDCls)
2971, 2919, 1684, 1459 cm™'; HRMS m/z 212.0299 (calcd for C;3H30S, 212.0296).

1-Methoxy-9H-thioxanthen-9-one (6b).
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'H NMR (CDCls) & 4.00 (s, 3H), 6.90 (d, J = 7.4 Hz, 1H), 7.11 (d, J = 8.1 Hz, 1H), 7.39-
7.56 (m, 4H), 7.45 (dd, J = 7.8, 1.0 Hz, 1H); C NMR (CDCl3) & 56.6, 109.2, 118.3, 119.8,
125.2, 126.5, 129.9, 131.8, 132.2, 133.0, 135.5, 140.0, 162.4, 180.9; IR (CDCls) 3057, 2943,
1639, 1456 cm™'; HRMS m/z 242.0404 (calcd for C4H;00,S, 242.0402).
2,3-Dimethylthioxanthen-9-one (6¢).

'H NMR (CDCl3) & 2.39 (s, 3H), 2.40 (s, 3H), 7.34 (d, J = 0.5 Hz, 1H), 7.44-7.49 (m, 1H),
7.55-7.62 (m, 2H), 8.38 (d, J = 0.4 Hz, 1H), 8.61-8.63 (m, 1H); *C NMR (CDCls) & 19.9,
20.4, 126.2, 127.5, 129.5, 130.0, 130.2, 132.2, 134.8, 136.0, 137.6, 143.0, 180.0; IR (CDCl5)
2916, 2848, 1631 cm™'; HRMS m/z 240.0613 (calcd for C;5H;,08, 240.0609).
2-Methylthioxanthen-9-one (6d) and 3-methylthioxanthen-9-one (6e).

These compounds were obtained as an inseparable mixture and characterized as a mixture.
'H NMR (CDCl3) & 2.47 (s, 3H), 2.49 (s, 3H), 7.27-7.30 (m, 1H), 7.36-7.37 (m, 1H), 7.44-
7.63 (m, 8H), 8.43-8.47 (m, 1H), 8.50 (d, J = 8.6 Hz, 1H), 8.60-8.63 (m, 2H); °C NMR
(CDCl) 6 21.5, 22.0, 126.0, 126.1, 126.2, 126.3, 126.4, 127.3, 128.1, 129.2, 129.4, 129.5,
129.8, 130.0, 130.1, 132.3, 134.0, 136.6, 137.4, 137.5, 137.6, 143.5, 178.0; IR (CDCls) 3059,
2920, 1638, 1602 cm™'; HRMS m/z 226.0456 (calcd for C14H;00S, 226.0452).
1,2,3,5-Tetrahydrocyclopenta[b]thioxanthen-9-one (7f).

'H NMR (CDCl3) 8 2.11-2.18 (m, 2H), 2.99-3.05 (m, 4H), 7.41-7.48 (m, 2H), 8.46 (s, 1H),
8.61-8.63 (m, 1H); °C NMR (CDCl3) & 25.8, 32.6, 33.3, 121.4, 125.2, 126.1, 126.2, 128.0,
129.6, 130.0, 132.1, 135.5, 137.6, 144.0, 150.5, 180.2; IR (CDCls) 2964, 2840, 1658 , 1630
cm'l; HRMS m/z 252.0612 (calcd for C1¢H;,0S, 252.0609).

10-Methyl-10H-acridin-9-one (9b).
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'H NMR (CDCl3) & 3.88 (s, 3H), 7.28 (t, J = 7.2 Hz, 2H), 7.50 (d, J = 8.7 Hz, 2H), 7.69-
7.73 (m, 2H), 8.55 (dd, J = 8.0, 1.2 Hz, 2H); °C NMR (CDCl3) & 33.9, 115.0, 121.5, 122.7,
128.0, 134.0, 142.8, 178.3; IR (CDCl3) 2917, 2850, 1637 cm™; HRMS m/z 209.0843 (calcd
for C14H;;NO, 209.0841).
3-Fluoro-10-methyl-10H-acridin-9-one (9d).

'H NMR (CDCls) § 3.78 (s, 3H), 6.93-6.99 (m, 1H), 7.09 (dd, J = 15.6, 3.0 Hz, 1H), 7.24-
7.29 (m, 1H), 7.43 (d, J = 11.6 Hz, 1H), 7.65-7.71 (m, 1H), 8.47-8.54 (m, 2H); *C NMR
(CDCl3) 6 34.0, 101.0, 101.4, 110.0, 110.3, 115.0, 119.4, 122.0, 122.7, 127.9, 131.0, 131.1,
134.1, 142.8, 144.3, 144.5, 164.9, 168.2, 177.3; IR (CDCl3) 2928, 1637, 1614 cm™'; HRMS
m/z 227.0744 (calcd for C14H;oFNO, 227.0746).
2-Fluoro-10-methyl-10H-acridin-9-one (9e).

'H NMR (CDCl3)  3.78 (s, 3H), 7.21 (t, J = 6.9 Hz, 1H), 7.35-7.41 (m, 3H), 7.64 (t, J = 6.3
Hz, 1H), 8.06 (d, J = 5.8 Hz, 1H), 8.42 (d, J = 6.4 Hz, 1H); >°C NMR (CDCl3) & 34.1, 111.9,
112.1, 114.9, 115.6, 117.1, 117.2, 121.5, 121.7, 122.1, 122.3, 127.7, 134.2, 139.1, 142.4,
156.4, 158.8, 177.3; IR (CDCl3) 2924, 1617, 1599 cm™; HRMS m/z 227.0749 (calcd for
C14H,0FNO, 227.0746).
2-Bromo-10-methyl-10H-acridin-9-one (9f).

'H NMR (CDCls) & 3.79 (s, 3H), 7.23-7.27 (m, 1H), 7.30 (d, J = 9.2 Hz, 1H), 7.43 (d, J =
10.8 Hz, 1H), 7.65-7.71 (m, 2H), 8.44 (dd, J = 8.0, 1.6 Hz, 1H), 8.55 (d, J = 2.6 Hz, 1H); °C
NMR (CDCl3) 6 34.0, 114.7, 115.1, 117.0, 121.8, 122.5, 123.7, 127.9, 130.1, 134.3, 136.6,
141.3, 142.4, 176.9; IR (CDCl3) 2926, 1628, 1608 cm™; HRMS m/z 286.9950 (calcd for
C14H,oBrNO, 286.9946).

2,3,10-Trimethyl-10H-acridin-9-one (9h).
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'H NMR (CDCl3) & 2.36 (s, 3H), 2.42 (s, 3H), 3.84 (s, 3H), 7.23-7.27 (m, 2H), 7.47 (d, J =
8.7 Hz, 1H), 7.66-7.70 (m, 1H), 8.27 (s, 1H), 8.54 (dd, J = 8.1, 1.6 Hz, 1H); °C NMR
(CDClL) 6 19.3, 21.4, 33.7, 114.8, 115.5, 120.9, 121.0, 122.6, 127.7, 127.9, 130.6, 133.6,
141.3, 142.6, 144.3, 177.9; IR (CDCl3) 2918, 1638, 1614 cm™'; HRMS m/z 237.1157 (calcd
for C;6H;5NO, 237.1154).
2,10-Dimethyl-10H-acridin-9-one (9i) and 3,10-dimethyl-10H-acridin-9-one (9j).

These compounds were obtained as an inseparable mixture and characterized as a mixture.
'H NMR (CDCl3) & 2.43 (s, 3H), 2.49 (s, 3H), 3.80 (s, 3H), 3.81 (s, 3H), 7.05 (d, J = 8.1 Hz,
1H), 7.22-7.26 (m, 3H), 7.36 (d, J = 8.8 Hz, 1H), 7.43-7.40 (m, 3H), 7.64-7.68 (m, 2H), 8.30
(d, J = 0.9 Hz, 1H), 8.50-8.54 (m, 2H); °C NMR (CDCl3) & 20.9, 22.8, 33.7, 33.8, 114.8,
114.9, 120.6, 121.1, 121.3, 122.4, 122.5, 122.6, 123.1, 127.1, 127.8, 127.9, 131.0, 133.7,
133.8, 135.4, 140.8, 142.7, 142.8, 144.9, 178.0, 178.2; IR (CDCl3) 2917, 2851, 1632, 1611
cm™'; HRMS m/z 223.0998 (caled for C;sH3NO, 223.0997).
5-Methyl-1,2,3,5-tetrahydrocyclopenta[b]acridin-10-one (9K).

'H NMR (CDCl3) § 2.10-2.17 (m, 2H), 2.97-3.05 (m, 4H), 3.83 (s, 3H), 7.22-7.26 (m, 1H),
7.33 (s, 1H), 7.45 (d, J = 8.7 Hz, 1H), 7.64-7.69 (m, 1H), 8.34 (s, 1H), 8.53 (d, J = 8.0 Hz,
1H); °C NMR (CDCls) § 26.0, 32.1, 34.0, 110.2, 114.8, 121.0, 121.6. 122.4. 127.9, 133.5,
138.3, 142.1, 142.5, 152.2, 178.1; IR (CDCls) 2948, 2840, 1617, 1595 cm™'; HRMS m/z

249.1158 (calcd for C17H;5NO, 249.1154).
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GENERAL CONCLUSIONS

In this dissertation, several novel palladium migration processes and a coupling-cyclization
reaction of silylaryl triflates and substituted benzoates have been investigated. The scope,
limitations, and applications of these reactions are presented in detail.

Chapter 1 investigated an unusual consecutive vinylic to aryl to allylic palladium migration
process, which affords a novel way to generate m-allylpalladium complexes. This migration
process appears to involve an equilibrium between organopalladium(IV) hydrides and
organopalladium(Il) intermediates. A mechanistic study of the aryl to aryl palladium
migration process provides some new information.

Chapter 2 describes a synthesis of substituted carbazoles, indoles and dibenzofurans by the
palladium-catalyzed cross-coupling of alkynes and appropriately substituted aryl iodides.
Results from deuterium labeling experiments are consistent with the proposed mechanism.

Chapter 3 describes the preparation of biologically-interesting fluoren-9-one and xanth-9-
one derivatives by a novel aryl to imidoyl palladium migration, followed by intramolecular
arylation. The results from the deuterium labeling experiments are consistent with the
proposed duel mechanism.

Chapter 4 reports the synthesis of xanthone, thioxanthone and acridone derivatives from
the coupling-cyclization of silylaryl triflates and substituted benzoates. The scope and
limitations of this methodology and elaboration of the halogen-substituted xanthone obtained

have been investigated.
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APPENDIX B. CHAPTER 2 'H AND '°C NMR SPECTRA
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